【題目】如圖,四棱錐中,底面為矩形, 平面, ,點的中點,點在棱上移動.

(1)當(dāng)點的中點時,試判斷與平面的位置關(guān)系,并說明理由;

(2)求證:無論點的何處,都有

(3)求二面角的余弦值.

【答案】(1);(2)詳見解析;(3).

【解析】試題分析:

(1)由于分別為的中點,可得,再根據(jù)線面平行的判定定理即可證明結(jié)果; (2)因為,可得;由于為矩形,則,根據(jù)線面垂直的判定定理,可得,進而可得.再由于,且中點,可得,于是可證,進而求證出結(jié)論;(3) , ,連接,則即為所求二面角的平面角.然后再中即可求出的余弦值,即可求出二面角的余弦值.

試題解析:

(1)∵分別為的中點,

,∵,∴.

(2)∵,∴.

為矩形,∴,∵,∴,

,∴.

,且中點,∴.

,∴,∵,∴.

(3)

, ,連接,則即為所求.易得.

為矩形,∴,所以點的距離為.

,∴,∵中點,∴中點,

.

.

即二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點的直線與圓相交于兩點,過點且與垂直的直線與圓的另一交點為

(1)當(dāng)點坐標(biāo)為時,求直線的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓中心在坐標(biāo)原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.

(1)若=6,求k的值;

(2)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某班的一次期末考試中,隨機的抽取了七位同學(xué)的數(shù)學(xué)(滿分150分)、物理(滿分110分)成績?nèi)缦卤硭,?shù)學(xué)、物理成績分別用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

關(guān)于t的回歸方程;

(2)利用(1)中的回歸方程,分析數(shù)學(xué)成績的變化對物理成績的影響,并估計該班某學(xué)生數(shù)學(xué)成績130分時,他的物理成績(精確到個位).

附:回歸方程 中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)(mZ)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).

(1)求函數(shù)f(x)的解析式;

(2)設(shè)函數(shù),若g(x)>2對任意的xR恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).

(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;

(II)設(shè)函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點,求m的值;

(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費標(biāo)準(zhǔn)是每車每次不超過兩小時免費,超過兩小時的部分每小時2元(不足1小時的部分按1小時計算).甲乙兩人相互獨立租車(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為 ;兩小時以上且不超過三小時還車的概率分別為, ;兩人租車時間都不會超過四小時.

(1)求出甲、乙所付租車費用相同的概率;

(2)設(shè)甲、乙兩人所付的租車費用之和為隨機變量,求隨機變量的概率分布和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P、Q為兩個非空集合,定義集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},則P+Q中元素的個數(shù)為

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足:,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,且.

(1)求數(shù)列,的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案