9.“遠望嵬嵬塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾碗燈?”源自明代數(shù)學家吳敬所著的《九章詳註比纇算法大全》,通過計算得到的答案是( 。
A.2B.3C.4D.5

分析 設尖頭a盞燈,根據(jù)題意由上往下數(shù)第n層有2n-1a盞燈,由此利用等比數(shù)列性質(zhì)能求出結(jié)果.

解答 解:由題意設尖頭a盞燈,
根據(jù)題意由上往下數(shù)第n層有2n-1a盞燈,
所以一共有(1+2+4+8+16+32+64)a=381盞燈,
解得a=3.
故選:B.

點評 本題考查等比數(shù)列在生產(chǎn)生活中的實際運用,是基礎題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
(Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知定點Q($\sqrt{3}$,0),P為圓N:${(x+\sqrt{3})^2}+{y^2}=24$上任意一點,線段QP的垂直平分線交NP于點M.
(Ⅰ)當P點在圓周上運動時,求點M (x,y) 的軌跡C的方程;
(Ⅱ)若直線l與曲線C交于A、B兩點,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,求證:直線l與某個定圓E相切,并求出定圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知f(x)=log3x,f(a)>f(2),那么a的取值范圍是( 。
A.{a|a>2}B.{a|1<a<2}C.$\{a|a>\frac{1}{2}\}$D.$\{a|\frac{1}{2}<a<1\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\frac{1}{x-1}$.關于f(x)的性質(zhì),給出下面四個判斷:
①f(x)的定義域是R;
②f(x)的值域是R;
③f(x)是減函數(shù);
④f(x)的圖象是中心對稱圖形.
其中正確的判斷是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在數(shù)學課外活動中,小明同學進行了糖塊溶于水的實驗:將一塊質(zhì)量為7克的糖塊放入一定量的水中,測量不同時刻未溶解糖塊的質(zhì)量,得到若干組數(shù)據(jù),其中在第5分鐘末測得未溶解糖塊的質(zhì)量為3.5克.聯(lián)想到教科書中研究“物體冷卻”的問題,小明發(fā)現(xiàn)可以用指數(shù)型函數(shù)S=ae-kt(a,k是常數(shù))來描述以上糖塊的溶解過程,其中S(單位:克)代表t分鐘末未溶解糖塊的質(zhì)量.
(1)a=7;
(2)求k的值;
(3)設這個實驗中t分鐘末已溶解的糖塊的質(zhì)量為M,請畫出M隨t變化的函數(shù)關系的草圖,并簡要描述實驗中糖塊的溶解過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線x-y-1=0的傾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x∈Z|x≥2},B={x|(x-1)(x-3)<0},則A∩B=( 。
A.B.{2}C.{2,3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知F1,F(xiàn)2是橢圓$\frac{x^2}{45}+\frac{y^2}{20}=1$的兩個焦點,M是橢圓上的點,且MF1⊥MF2
(1)求△MF1F2的周長;
(2)求點M的坐標.

查看答案和解析>>

同步練習冊答案