1.直線x-y-1=0的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

分析 先由直線的方程求出直線的斜率,根據(jù)斜率與傾斜角的關(guān)系及傾斜角的范圍,求出直線的傾斜角.

解答 解:直線x-y-1=0的斜率為k=1
設(shè)直線的傾斜角為α,
∴tanα=1
∵α∈[0,π]
∴α=$\frac{π}{4}$.
故選B.

點評 根據(jù)直線的方程求直線的傾斜角,一般先通過直線方程求出直線的斜率,再由斜率是傾斜角的正切值求出直線的傾斜角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知樣本數(shù)據(jù)x1,x2,x3,x4,x5的方差s2=3,則樣本數(shù)據(jù)2x1,2x2,2x3,2x4,2x5的方差為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.直線x+2y-4=0與直線2x-y+2=0的交點坐標是( 。
A.(2,0)B.(2,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“遠望嵬嵬塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾碗燈?”源自明代數(shù)學家吳敬所著的《九章詳註比纇算法大全》,通過計算得到的答案是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知直線l1:y=mx+1和l2:x=-my+1相交于點P,O為坐標原點,則P點橫坐標是$\frac{1-m}{1{+m}^{2}}$(用m表示),$|{\overrightarrow{PO}}|$的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如上圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動,則直線D1E與A1D所成角的大小是90°,若D1E⊥EC,則直線A1D與平面D1DE所成的角為30°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知全集U={1,2,3,4,5,6,7},集合A={1,2,3},B={2,3,4},則A∩B={2,3},∁UA={4,5,6,7}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點F($\sqrt{6},0$),過點F作平行于y軸的直線截橢圓C所得的弦長為$\sqrt{2}$.
(1)求橢圓的標準方程;
(2)過點(1,0)的直線l交橢圓C于P,Q兩點,N點在直線x=-1上,若△NPQ是等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某幾何體的三視圖如圖所示,其中正視圖是邊長為2的正方形,俯視圖是正三角形,則這個幾何體的體積是(  )
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$\frac{2}{3}\sqrt{3}$D.8

查看答案和解析>>

同步練習冊答案