【題目】已知拋物線Ey2=8x,圓M:(x-2)2y2=4,點N為拋物線E上的動點,O為坐標原點,線段ON的中點P的軌跡為曲線C.

(1)求曲線C的方程;

(2)點Q(x0,y0)(x0≥5)是曲線C上的點,過點Q作圓M的兩條切線,分別與x軸交于AB兩點,求△QAB面積的最小值.

【答案】(1) y2=4x;(2) .

【解析】

試題分析: (1)利用代入法求出曲線方程;(2)設(shè)切線方程為yy0k(xx0).圓心到切線的距離為半徑,根據(jù)點到直線的距離公式列出等式,整理成關(guān)于k的一元二次方程,根據(jù)韋達定理表示出面積,利用函數(shù)的單調(diào)性求出最值.

試題解析:(1)設(shè)P(x,y),則點N(2x,2y)在拋物線Ey2=8x上,∴4y2=16x,∴曲線C的方程為y2=4x.

(2)設(shè)切線方程為yy0k(xx0).

y=0,得xx0.

圓心(2,0)到切線的距離d=2,

整理得(x-4x0)k2+(4y0-2x0y0)ky-4=0.

設(shè)兩條切線的斜率分別為k1k2,則k1k2,k1k2.

∴△QAB面積S·|y0|=

y=2·.

設(shè)tx0-1∈[4,+∞),則Sf(t)=2在[4,+∞)上單調(diào)遞增,且f(4)=,

f(t)≥,即△QAB面積的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】連續(xù)拋擲同一顆骰子3次,則3次擲得的點數(shù)之和為9的概率是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的左右焦點,點在橢圓上,且.

(1)求橢圓的方程;

(2)過的直線分別交橢圓,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1,F2,P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率分別為e1e2,且,若∠F1PF2,則雙曲線C2的漸近線方程為(  )

A. x±y=0 B. x±y=0

C. x±y=0 D. x±2y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且在區(qū)間上的最大值比最小值大

1)求的值;

2)若函數(shù)在區(qū)間的最小值是,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%93%,占全球的11%35%,因此其素有釩鈦之都的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標值yy值越大產(chǎn)品的性能越好)與這種新合金材料的含量x(單位:克)的關(guān)系為:當0≤x7時,yx的二次函數(shù);當x≥7時,.測得部分數(shù)據(jù)如表:

(1)求y關(guān)于x的函數(shù)關(guān)系式yfx);

(2)求該新合金材料的含量x為何值時產(chǎn)品的性能達到最佳.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機對心肺疾病入院的50人進行問卷調(diào)查,得到了如下的列聯(lián)表:

(1)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?

(2)在上述抽取的6人中選2人,求恰好有1名女性的概率;

(3)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,你有多大把握認為心肺疾病與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若函數(shù)的定義域為,且存在非零常數(shù),對任意 , 恒成立,則稱為線周期函數(shù), 的線周期.

(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);

(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);

(3)若為線周期函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實數(shù)ab滿足ab>0ab,由a、b、按一定順序構(gòu)成的數(shù)列( 。

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

同步練習冊答案