【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值y(y值越大產(chǎn)品的性能越好)與這種新合金材料的含量x(單位:克)的關(guān)系為:當(dāng)0≤x<7時,y是x的二次函數(shù);當(dāng)x≥7時,.測得部分?jǐn)?shù)據(jù)如表:
(1)求y關(guān)于x的函數(shù)關(guān)系式y=f(x);
(2)求該新合金材料的含量x為何值時產(chǎn)品的性能達(dá)到最佳.
【答案】(1);(2)當(dāng)時產(chǎn)品的性能達(dá)到最佳
【解析】
(1)二次函數(shù)可設(shè)解析式為,代入已知數(shù)據(jù)可求得函數(shù)解析式;
(2)分段函數(shù)分段求出最大值后比較可得.
(1)當(dāng)0≤x<7時,y是x的二次函數(shù),可設(shè)y=ax2+bx+c(a≠0),
由x=0,y=﹣4可得c=﹣4,由x=2,y=8,得4a+2b=12①,
由x=6,y=8,可得36a+6b=12②,聯(lián)立①②解得a=﹣1,b=8,
即有y=﹣x2+8x﹣4;
當(dāng)x≥7時,,由x=10,,可得m=8,即有;
綜上可得.
(2)當(dāng)0≤x<7時,y=﹣x2+8x﹣4=﹣(x﹣4)2+12,
即有x=4時,取得最大值12;
當(dāng)x≥7時,遞減,可得y≤3,當(dāng)x=7時,取得最大值3.
綜上可得當(dāng)x=4時產(chǎn)品的性能達(dá)到最佳.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求k的值;
(2)若方程有實(shí)數(shù)根,求b的取值范圍;
(3)設(shè),若函數(shù)與的圖象有且只有一個公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩地相距24km.甲車、乙車先后從A地出發(fā)勻速駛向B地.甲車從A地到B地需行駛25min;乙車從A地到B地需行駛20min.乙車比甲車晚出發(fā)2min.
(1)分別寫出甲、乙兩車所行路程關(guān)于甲車行駛時間的函數(shù)關(guān)系式;
(2)甲、乙兩車何時在途中相遇?相遇時距A地多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點(diǎn)O在圓M上;
(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=8x,圓M:(x-2)2+y2=4,點(diǎn)N為拋物線E上的動點(diǎn),O為坐標(biāo)原點(diǎn),線段ON的中點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點(diǎn)Q(x0,y0)(x0≥5)是曲線C上的點(diǎn),過點(diǎn)Q作圓M的兩條切線,分別與x軸交于A,B兩點(diǎn),求△QAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下三個關(guān)于圓錐曲線的命題中:
①設(shè)為兩個定點(diǎn),為非零常數(shù),若,則動點(diǎn)的軌跡是雙曲線;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③雙曲線與橢圓有相同的焦點(diǎn);
④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β為兩個不同平面,a,b為兩條不同直線,下列選項(xiàng)正確的是( 。
①若a∥α,b∥α,則a∥b
②若aα,α∥β,則a∥β
③若α∥β,a∥β,則
④若a∥α,則a與平面α內(nèi)的無數(shù)條直線平行
⑤若a∥b,則a平行于經(jīng)過b的所有平面
A.①②B.③④C.②④D.②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點(diǎn)、,若其歐拉線方程為,則頂點(diǎn)的坐標(biāo)是( )
參考公式:若的頂點(diǎn)、、的坐標(biāo)分別是、、,則該的重心的坐標(biāo)為.
A.B.,
C.,D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com