【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
【答案】
(1)解:方法一:證明:連接AC,AC交BD于O,連接EO.
∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn)
在△PAC中,EO是中位線,∴PA∥EO
而EO平面EDB且PA平面EDB,
所以,PA∥平面EDB
方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)DC=a.
證明:連接AC,AC交BD于G,連接EG.
依題意得 .
∵底面ABCD是正方形,∴G是此正方形的中心,故點(diǎn)G的坐標(biāo)為 且 .
∴ ,這表明PA∥EG.
而EG平面EDB且PA平面EDB,∴PA∥平面EDB
(2)解:方法一,證明:
∵PD⊥底面ABCD且DC底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,
∴DE⊥PC.①
同樣由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC.
而PB平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD
方法二:證明;依題意得B(a,a,0), .
又 ,故 .
∴PB⊥DE.
由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD
(3)解:方法一:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.
由(2)知,DE⊥EF,PD⊥DB.
設(shè)正方形ABCD的邊長(zhǎng)為a,
則 , .
在Rt△PDB中, .
在Rt△EFD中, ,∴ .
所以,二面角C﹣PB﹣D的大小為
方法二:解:設(shè)點(diǎn)F的坐標(biāo)為(x0,y0,z0), ,則(x0,y0,z0﹣a)=λ(a,a,﹣a).
從而x0=λa,y0=λa,z0=(1﹣λ)a.所以 .
由條件EF⊥PB知, ,即 ,解得
∴點(diǎn)F的坐標(biāo)為 ,且 ,
∴
即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.
∵ ,且 , ,
∴ .
∴ .
所以,二面角C﹣PB﹣D的大小為 .
【解析】法一:(1)連接AC,AC交BD于O,連接EO要證明PA∥平面EDB,只需證明直線PA平行平面EDB內(nèi)的直線EO;(2)要證明PB⊥平面EFD,只需證明PB垂直平面EFD內(nèi)的兩條相交直線DE、EF,即可;(3)必須說(shuō)明∠EFD是二面角C﹣PB﹣D的平面角,然后求二面角C﹣PB﹣D的大。ǘ喝鐖D所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)DC=a.(1)連接AC,AC交BD于G,連接EG,求出 ,即可證明PA∥平面EDB;(2)證明EF⊥PB, ,即可證明PB⊥平面EFD;(3)求出 ,利用 ,求二面角C﹣PB﹣D的大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年年底,某商業(yè)集團(tuán)根據(jù)相關(guān)評(píng)分標(biāo)準(zhǔn),對(duì)所屬20家商業(yè)連鎖店進(jìn)行了年度考核評(píng)估,并依據(jù)考核評(píng)估得分(最低分60分,最高分100分)將這些連鎖店分別評(píng)定為A,B,C,D四個(gè)類型,其考核評(píng)估標(biāo)準(zhǔn)如下表:
評(píng)估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
評(píng)分類型 | D | C | B | A |
考核評(píng)估后,對(duì)各連鎖店的評(píng)估分?jǐn)?shù)進(jìn)行統(tǒng)計(jì)分析,得其頻率分布直方圖如下:
(Ⅰ)評(píng)分類型為A的商業(yè)連鎖店有多少家;
(Ⅱ)現(xiàn)從評(píng)分類型為A,D的所有商業(yè)連鎖店中隨機(jī)抽取兩家做分析,求這兩家來(lái)自同一評(píng)分類型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出40名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:
觀察圖形,回答下列問(wèn)題:
(1)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的中位數(shù);
(2)從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:
①乘積(a+b+c+d)(p+q+r)(m+n)展開(kāi)式的項(xiàng)數(shù)是24;
②由1、2、3、4、5組成沒(méi)有重復(fù)數(shù)字且1、2都不與5相鄰的五位數(shù)的個(gè)數(shù)是36;
③某會(huì)議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為24;
④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇數(shù)的個(gè)數(shù)為2.
其中真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)長(zhǎng)度為1的平面向量 和 ,它們的夾角為120°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧 上變動(dòng).若 ,其中x,y∈R,試求x+y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防H1N1病毒暴發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒(méi)有通過(guò)),公司選定2000個(gè)流感樣本分成三組,測(cè)試結(jié)果如表:
A組 | B組 | C組 | |
疫苗有效 | 673 | x | y |
疫苗無(wú)效 | 77 | 90 | z |
已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,問(wèn)應(yīng)在C組抽取多少個(gè)?
(3)已知y≥465,z≥25,求不能通過(guò)測(cè)試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為( )
A.y=﹣4sin( )
B.y=4sin( )
C.y=﹣4sin( )
D.y=4sin( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com