已知、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過(guò)點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),
的面積最大?最大面積等于多少?
(Ⅰ);(Ⅱ)當(dāng)
時(shí),
的面積最大,最大面積為
.
【解析】
試題分析:1.由于題目較長(zhǎng),一些考生不能識(shí)別有效信息,未能救出橢圓的方程求.2. 第(Ⅰ)問(wèn),求
的取值范圍.其主要步驟與方法為:由
,得關(guān)于
、
的不等式
…… ①.由根與系數(shù)的關(guān)系、
,
在橢圓
上,可以得到關(guān)于
、
、
的等式
…… ②.把等式②代入①,可以達(dá)到消元的目的,但問(wèn)題是這里一共有三個(gè)變量,就是消了
,那還有關(guān)于
和
的不等式,如何求出
的取值范圍呢?這將會(huì)成為難點(diǎn).事實(shí)上,在把等式②代入①的過(guò)程中,
和
一起被消掉,得到了關(guān)于
的不等式.解之即可.
3.第(Ⅱ)問(wèn)要把的面積函數(shù)先求出來(lái).用弦長(zhǎng)公式求底,用點(diǎn)到直線的距離公式求高,得到
的面積
,函數(shù)中有兩個(gè)自變量
和
,如何求函數(shù)的最大值呢?這又成為難點(diǎn).這里很難想到把②代入面積函數(shù)中,因?yàn)棰谥泻腥齻€(gè)變量,即使代入消掉一個(gè)后,面積函數(shù)依然有兩個(gè)自變量.但這里很巧合的是:代入消掉
后,事實(shí)上,
也自動(dòng)地消除了,于是得到了面積
和自變量
的函數(shù)關(guān)系
,再由第(Ⅰ)中所得到的
的取值范圍
,利用均值不等式,即可求出面積的最大值了.
試題解析:(Ⅰ)設(shè)橢圓的半焦距為
,根據(jù)題意得
解方程組得
∴橢圓的方程為
.
由,得
.
根據(jù)已知得關(guān)于的方程
有兩個(gè)不相等的實(shí)數(shù)根.
∴,
化簡(jiǎn)得:.
設(shè)、
,則
.
(1)當(dāng)時(shí),點(diǎn)
、
關(guān)于原點(diǎn)對(duì)稱,
,滿足題意;
(2)當(dāng)時(shí),點(diǎn)
、
關(guān)于原點(diǎn)不對(duì)稱,
.
由,得
即
∵在橢圓
上,∴
,
化簡(jiǎn)得:.
∵,∴
.
∵,
∴,即
且
.
綜合(1)、(2)兩種情況,得實(shí)數(shù)的取值范圍是
.
(Ⅱ)當(dāng)時(shí),
,此時(shí),
、
、
三點(diǎn)在一條直線上,不構(gòu)成
.
∴為使的面積最大,
.
∵
∴.
∵原點(diǎn)到直線
的距離
,
∴的面積
.
∵,
,
∴.
∴.
∵,
∴.
“”
成立
,即
.
∴當(dāng)時(shí),
的面積最大,最大面積為
考點(diǎn):直線和橢圓的相關(guān)問(wèn)題,綜合考查考生的運(yùn)算求解能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(14分)已知、
分別是橢圓
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若
(1)求此橢圓的方程;
(2)點(diǎn)是橢圓的右頂點(diǎn),直線
與橢圓交于
、
兩點(diǎn)(
在第一象限內(nèi)),又
、
是此橢圓上兩點(diǎn),并且滿足
,求證:向量
與
共線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省畢業(yè)生復(fù)習(xí)第二次統(tǒng)一檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過(guò)點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(12分)已知、
分別是橢圓
的左、右焦點(diǎn),點(diǎn)B是其上頂點(diǎn),橢圓的右準(zhǔn)線與
軸交于點(diǎn)N,且
。
(1)求橢圓方程;
(2)直線:
與橢圓交于不同的兩點(diǎn)M、Q,若△BMQ是以MQ為底邊的等腰三角形,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆廣東北江中學(xué)第一學(xué)期期末考試高二理科數(shù)學(xué) 題型:解答題
已知、
分別是橢圓C:
的左焦點(diǎn)和右焦點(diǎn),O是坐標(biāo)系原點(diǎn), 且橢圓C的焦距為6, 過(guò)
的弦
兩端點(diǎn)
與
所成⊿
的周長(zhǎng)是
.
(Ⅰ).求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ) 已知點(diǎn),
是橢圓C上不同的兩點(diǎn),線段
的中點(diǎn)為
.
求直線的方程;
(Ⅲ)若線段的垂直平分線與橢圓C交于點(diǎn)
、
,試問(wèn)四點(diǎn)
、
、
、
是否在同一個(gè)圓上,若是,求出該圓的方程;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com