【題目】已知以橢圓Cab>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形為等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓C的方程;

(2)矩形ABCD的兩頂點(diǎn)C、D在直線yx+2上,A、B在橢圓C上,若矩形ABCD的周長(zhǎng)為,求直線AB的方程.

【答案】1;(2yx+1或.

【解析】

1)由兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形為等腰直角三角形,得出,于是得出,然后利用圓心到直線的距離等于圓的半徑列出等式,并代入關(guān)系式可得出、、的值,即可得出橢圓的方程;(2)根據(jù)矩形對(duì)邊互相平行,設(shè)直線的方程為,并設(shè)點(diǎn),將直線的方程與橢圓的方程聯(lián)立,由得出的取值范圍,列出韋達(dá)定理,利用弦長(zhǎng)公式得出的表達(dá)式,利用兩平行直線的距離公式得出直線的距離,即為,再由列出有關(guān)的方程,即可求出的值,于是可得出直線的方程.

(1)由題意知,以橢圓C的右焦點(diǎn)為圓心,橢圓長(zhǎng)半軸長(zhǎng)為半徑的圓的方程為,

圓心到直線x+y+1=0的距離,

∵以橢圓C的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形為等腰直角三角形,

所以,bc,,代入式得bc=1,.

因此,所求橢圓的方程為

(2)設(shè)直線AB的方程為yx+m,代入橢圓C的方程,整理得3x2+4mx+2m2﹣2=0,

由△>0,得,

設(shè)點(diǎn)Ax1y1)、Bx2y2),則,.

,易知,

則由,

所以,由已知可得,即,

整理得41m2+30m﹣71=0,解得m=1或,

所以,直線AB的方程為yx+1或.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,,,,且平面⊥平面.

(1)求三棱柱的體積.

(2)點(diǎn)在棱上,且與平面所成角的余弦值為),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題:函數(shù)的定義域?yàn)?/span>;命題:關(guān)于的方程有實(shí)根.

(1)如果是真命題,求實(shí)數(shù)的取值范圍.

(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖(1)所示,橢圓的中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上,A、B是橢圓的頂點(diǎn),P是橢圓上一點(diǎn),且PF1⊥x軸,PF2∥AB,求此橢圓的離心率;

(2)如圖(2)所示,雙曲線的一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果直線FB與該雙曲線的一條漸近線垂直,求此雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCDABCD′的棱長(zhǎng)為1,E,F分別是棱AA′,CC′的中點(diǎn),過(guò)直線E,F的平面分別與棱BB′、DD′交于M,N,設(shè)BMx,x∈[0,1],給出以下四個(gè)命題:

平面MENF⊥平面BDDB′;

當(dāng)且僅當(dāng)x時(shí),四邊形MENF的面積最。

四邊形MENF周長(zhǎng)Lfx),x∈[0,1]是單調(diào)函數(shù);

四棱錐C′﹣MENF的體積Vhx)為常函數(shù);

以上命題中假命題的序號(hào)為(  )

A. ①④B. C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C過(guò)點(diǎn)M0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.

(1)求圓C的方程;

(2)設(shè)直線ax-y+1=0與圓C交于AB兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/個(gè)

6

11

20

27

57

77

經(jīng)計(jì)算得: , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說(shuō)明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計(jì)為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={xy|x-42+y2=1},B={x,y|x-t2+y-at+22=1},如果命題tR,AB是真命題,則實(shí)數(shù)a的取值范圍是( 。

A.B.

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.

(1)若當(dāng)時(shí),,求此時(shí)的值;

(2)設(shè),且

(i)試將表示為的函數(shù),并求出的取值范圍;

(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于試求兩處噴泉間距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案