【題目】將正方體ABCD﹣A1B1C1D1沿三角形A1BC1所在平面削去一角可得到如圖所示的幾何體.
(1)連結(jié)BD,BD1,證明:平面BDD1⊥平面A1BC1;
(2)已知P,Q,R分別是正方形ABCDCDD1C1ADD1A1的中心(即對角線交點),證明:平面PQR∥平面A1BC1.
【答案】(1)答案見解析.(2)答案見解析
【解析】
(1)連接AC,證明A1C1⊥平面BDD1, 平面BDD1⊥平面A1BC1即得證;(2)連接A1D,BD,C1D,證明PQ∥平面A1BC1,PR∥平面A1BC1, 平面PQR∥平面A1BC1即得證.
(1)連接AC,∵正方體ABCD﹣A1B1C1D1,
∴AA1∥CC1,
∴A,A1,C,C1共面,
∵正方體ABCD﹣A1B1C1D1,
∴DD1⊥平面A1C1D1,
∵A1C1在平面A1C1D1內(nèi),
∴DD1⊥A1C1,
∵正方體ABCD﹣A1B1C1D1,
∴四邊形ABCD為正方形,
∴AC⊥BD,
∵正方體ABCD﹣A1B1C1D1,
∴AA1⊥平面ABCD,
∵BD在平面A1C1D1內(nèi),
∴AA1⊥BD,
∵AC∩AA1=A且都在平面AA1C1C捏,
∴BD⊥平面AA1C1C,
∵A1C1在平面AA1C1C內(nèi),
∴BD⊥A1C1,
∵BD∩DD1=D,且都在平面BDD1內(nèi),
∴A1C1⊥平面BDD1,
∵A1C1在平面A1BC1內(nèi),
∴平面BDD1⊥平面A1BC1;
(2)連接A1D,BD,C1D,
∵P,Q,R分別是正方形ABCD,CDD1C1,ADD1A1的中心,
∴P,Q,R分別是BD,C1D,A1D的中點,
∴PQ∥BC1,
∵BC1在平面A1BC1內(nèi),PQ不在平面A1BC1內(nèi),
∴PQ∥平面A1BC1,
同理可得PR∥平面A1BC1,
又PQ∩PR=P且都在平面PQR內(nèi),
∴平面PQR∥平面A1BC1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標原點,是它的兩個頂點,直線與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù), .(1)討論的極值點的個數(shù);(2)若對于,總有.(i)求實數(shù)的取值范圍;(ii)求證:對于,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家提出的“中國剩余定理”又稱“孫子定理”,它在世界數(shù)學(xué)史上具有光輝的一頁,堪稱數(shù)學(xué)史上名垂百世的成就,而且一直啟發(fā)和指引著歷代數(shù)學(xué)家們.定理涉及的是數(shù)的整除問題,其數(shù)學(xué)思想在近代數(shù)學(xué)、當代密碼學(xué)研究及日常生活都有著廣泛應(yīng)用,為世界數(shù)學(xué)的發(fā)展做出了巨大貢獻,現(xiàn)有這樣一個整除問題:將1到2019這2019個整數(shù)中能被5除余1且被7除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,那么此數(shù)列的項數(shù)為( )
A.56B.57C.58D.59
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.
(1)求的值;
(2)動點在拋物線的準線上,動點在上,若在點處的切線交軸于點,設(shè).求證點在定直線上,并求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個上下底面均是邊長為2的正三角形的直三棱柱,且該直三棱柱的高為4,D為AB的中點,E為CC1的中點.
(1)求DE與平面ABC夾角的正弦值;
(2)求二面角A﹣A1D﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C相交于A,B兩點.求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據(jù)學(xué)生考試時的原始卷面分數(shù),由高到低進行排序,評定為、、、、五個等級.某試點高中2018年參加“選擇考”總?cè)藬?shù)是2016年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結(jié)果,得到如下圖表:
針對該!斑x擇考”情況,2018年與2016年比較,下列說法正確的是( )
A. 獲得A等級的人數(shù)減少了B. 獲得B等級的人數(shù)增加了1.5倍
C. 獲得D等級的人數(shù)減少了一半D. 獲得E等級的人數(shù)相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,上、下頂點分別為,若,點關(guān)于直線的對稱點在橢圓上.
(1)求橢圓的方程與離心率;
(2)過點做直線與橢圓相交于兩個不同的點;若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com