科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期模擬預測理科數(shù)學試卷(解析版) 題型:解答題
在四棱錐中,平面,底面為矩形,.
(Ⅰ)當時,求證:;
(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,
又因為,………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,又………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆安徽省高一下學期期中考試數(shù)學試卷(解析版) 題型:解答題
設(shè)是直角坐標系中,x軸、y軸正方向上的單位向量,設(shè)
(1)若(,求.
(2)若時,求的夾角的余弦值.
(3)是否存在實數(shù),使,若存在求出的值,不存在說明理由.
【解析】第一問中,利用向量的數(shù)量積為0,解得為m=-2
第二問中,利用時,結(jié)合向量的夾角的余弦值公式解得
第三問中,利用向量共線,求解得到m不存在。
(1)因為設(shè)是直角坐標系中,x軸、y軸正方向上的單位向量,設(shè)
(2)因為
即;
(3)假設(shè)存在實數(shù),使,則有
因此不存在;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com