【題目】對相關(guān)系數(shù)r來說,下列說法正確的是( 。.
A.,越接近0,相關(guān)程度越大;越接近1,相關(guān)程度越小
B.,越接近1,相關(guān)程度越大;越大,相關(guān)程度越小
C.,越接近1,相關(guān)程度越大;越接近0,相關(guān)程度越小
D.,越接近1,相關(guān)程度越;越大,相關(guān)程度越大
【答案】C
【解析】
用相關(guān)系數(shù)r可以衡量兩個變量之間的相關(guān)關(guān)系的強弱,的絕對值越接近于,表示兩個變量的線性相關(guān)性越強,相關(guān)系數(shù)的取值范圍是,即可得到結(jié)果.
用相關(guān)系數(shù)r可以衡量兩個變量之間的相關(guān)關(guān)系的強弱,
的絕對值越接近于,表示兩個變量的線性相關(guān)性越強,
的絕對值越接近于,表示兩個變量之間幾乎不存在相關(guān)關(guān)系,
故“對于相關(guān)系數(shù)r來說,,越接近1,相關(guān)程度越大;
越接近0,相關(guān)程度越小”.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經(jīng)過的左焦點.
(1)求與的方程;
(2)直線經(jīng)過的上頂點且與交于,兩點,直線,與分別交于點(異于點),(異于點),證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.
(1)求橢圓的方程;
(2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標,若不存在,請說明理由;
(3)若,交橢圓于點,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=1時,求不等式f(x)>2的解集;
(2)若對任意x∈R,不等式f(x)≥a2-3a-3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足,,設(shè),.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,,求實數(shù)的最小值;
(Ⅲ)當時,給出一個新數(shù)列,其中,設(shè)這個新數(shù)列的前項和為,若可以寫成(,且,)的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖所示,在正三棱柱中,底面邊長為,側(cè)棱長為,是棱的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著教育信息化2.0時代的到來,依托網(wǎng)絡進行線上培訓越來越便捷,逐步成為實現(xiàn)全民終身學習的重要支撐.最近某高校繼續(xù)教育學院采用線上和線下相結(jié)合的方式開展了一次300名學員參加的“國學經(jīng)典誦讀”專題培訓.為了解參訓學員對于線上培訓、線下培訓的滿意程度,學院隨機選取了50名學員,將他們分成兩組,每組25人,分別對線上、線下兩種培訓進行滿意度測評,根據(jù)學員的評分(滿分100分)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷學員對于線上、線下哪種培訓的滿意度更高?并說明理由;
(2)求50名學員滿意度評分的中位數(shù),并將評分不超過、超過分別視為“基本滿意”、“非常滿意”兩個等級.
(i)利用樣本估計總體的思想,估算本次培訓共有多少學員對線上培訓非常滿意?
(ii)根據(jù)莖葉圖填寫下面的列聯(lián)表:
并根據(jù)列聯(lián)表判斷能否有99.5%的把握認為學員對兩種培訓方式的滿意度有差異?
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com