已知
1
3
≤k<1,函數(shù)f(x)=|2x-1|-k的零點分別為x1,x2(x1<x2),函數(shù)g(x)=|2x-1|-
k
2k+1
的零點分別為x3,x4(x3<x4),則(x4-x3)+(x2-x1)的最小值為( 。
A、1
B、log23
C、log26
D、3
考點:函數(shù)的零點與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先表示出2x12x2,2x32x4,再表示出2x2-x12x4-x3,從而表示出2(x4-x3)+(x2-x1),求出其范圍,從而求出(x4-x3)+(x2-x1)的范圍,進而求出(x4-x3)+(x2-x1)的最小值.
解答: 解:∵x1<x2,
2x1=1-k,2x2=1+k
又∵x3<x4,
2x3=1-
k
2k+1
,2x4=1+
k
2k+1
,
2x2-x1=
1+k
1-k
,2x4-x3=
3k+1
k+1
;
2(x4-x3)+(x2-x1)=
3k+1
1-k
=-3+
4
1-k
;
k∈[
1
3
,1)
,
-3+
4
1-k
∈[3,+∞)
;
∴x4-x3+x2-x1∈[log23,+∞),
故選:B.
點評:本題考察了函數(shù)的零點,方程的根的關(guān)系,求函數(shù)的值域問題以及指數(shù)函數(shù)的運算,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=2n-an,則數(shù)列{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,如果輸入的N是5,那么輸出p的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M,N是不等式組
x≥0
y≥0
x-y≥-1
x+y≤3
所表示的平面區(qū)域內(nèi)的兩個不同的點,則|MN|的最大值是( 。
A、3
2
B、
10
C、2
2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:其中說法正確的個數(shù)是( 。
①利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則事件“3a-1>0”發(fā)生的概率為
1
3
;
②“x+y≠0”是“x≠1或y≠1”的充分不必要條件;
③命題“在△ABC中,若sinA=sinB,則△ABC為等腰三角形”的否命題為真命題;
④如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的個數(shù)是( 。
(1)?x∈N,x3>x2
(2)存在一個四邊形沒有外接圓
(3)每個對數(shù)函數(shù)都是單調(diào)函數(shù)      
(4)任意素數(shù)都是奇數(shù).
A、2B、1C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x≥0
2x+y≤3
x+2y≥3
,則z=
x2
2
+y2的最大值等于(  )
A、.2B、3C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m=
1
0
exdx,n=
e
1
exdx,則m,n的大小為(  )
A、m>nB、m=n
C、m<nD、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(π-x)•cos(2π-x)-2
3
sin2x,a,b,c分別為△ABC中角A,B,C的對邊,角A為銳角且f(A)=0
(1)求角A的大;
(2)若a=2,b=2
3
,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案