(2007•廣州一模)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
分析:分別判斷每個函數(shù)的奇偶性和單調(diào)性.
解答:解:A.函數(shù)y=x3為奇函數(shù),在(0,+∞)上單調(diào)遞增,所以A不合適.
B.函數(shù)y=cosx為偶數(shù),但在(0,+∞)上不單調(diào),所以B不合適.
C.函數(shù)y=
1
x2
為偶函數(shù),在(0,+∞)上單調(diào)遞減,所以C不合適.
D.函數(shù)y=ln|x|為偶函數(shù),在(0,+∞)上單調(diào)遞增,所以D合適.
故選D.
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見基本函數(shù)的奇偶性和單調(diào)性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)已知圓C:x2+y2-2x-2y+1=0,直線l:y=kx,且l與C相交于P、Q兩點,點M(0,b),且MP⊥MQ.
(Ⅰ)當b=1時,求k的值;
(Ⅱ)當b∈(1,
32
),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點D,B,連結(jié)OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)已知i是虛數(shù)單位,復數(shù)(1+i)2=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)某市A、B、C三個區(qū)共有高中學生20000人,其中A區(qū)高中學生7000人,現(xiàn)采用分層抽樣的方法從這三個區(qū)所有高中學生中抽取一個容量為600人的樣本進行學習興趣調(diào)查,則A區(qū)應抽。ā 。

查看答案和解析>>

同步練習冊答案