(2007•廣州一模)某市A、B、C三個區(qū)共有高中學生20000人,其中A區(qū)高中學生7000人,現(xiàn)采用分層抽樣的方法從這三個區(qū)所有高中學生中抽取一個容量為600人的樣本進行學習興趣調查,則A區(qū)應抽取( 。
分析:本題是一個分層抽樣方法,根據(jù)總體數(shù)和要抽取的樣本數(shù),得到每個個體被抽到的概率,利用這個概率乘以A區(qū)的人數(shù),得到A區(qū)要抽取的人數(shù).
解答:解:由題意知A區(qū)在樣本中的比例為
7000
20000
,
∴A區(qū)應抽取的人數(shù)是
7000
20000
×600=210.
故選C.
點評:本題考查分層抽樣,抽樣過程中每個個體被抽到的可能性相同,這是解決抽樣問題的依據(jù),樣本容量、總體個數(shù)、每個個體被抽到的概率,這三者可以做到知二求一.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)已知圓C:x2+y2-2x-2y+1=0,直線l:y=kx,且l與C相交于P、Q兩點,點M(0,b),且MP⊥MQ.
(Ⅰ)當b=1時,求k的值;
(Ⅱ)當b∈(1,
32
),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調遞增的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點D,B,連結OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)已知i是虛數(shù)單位,復數(shù)(1+i)2=( 。

查看答案和解析>>

同步練習冊答案