【題目】已知拋物線:, 上一動點, 是焦點, .

Ⅰ)求的取值范圍;

Ⅱ)過點的直線相交于兩點,求使得面積最小時的直線的方程.

【答案】(1) 2.

【解析】試題分析:(1)根據(jù)兩點間距離公式表示,再根據(jù)拋物線將二元化為一元二次方程,最后根據(jù)二次函數(shù)性質(zhì)求取值范圍,(2)先設(shè)直線方程,與拋物線方程聯(lián)立,由韋達定理以及拋物線定義得,根據(jù)點到直線距離公式得高,代入三角形面積公式,根據(jù)斜率范圍求面積取值范圍,最后比較斜率不存在的情況得最小值.

試題解析:解:拋物線上一動點, 設(shè),.

=

的取值范圍是.

當(dāng)直線的斜率不存在時,直線方程為: .

此時,.

到直線的距離,;

當(dāng)直線的斜率存在時,設(shè)為,則直線的方程為

設(shè)

,消去.

.

到直線的距離

綜上, 面積的取值范圍是.

當(dāng)面積最小時,直線的方程為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地高一學(xué)生的體能狀況,某校抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?

(2)若次數(shù)在110以上為達標,試估計全體高一學(xué)生的達標率為多少?

(3)通過該統(tǒng)計圖,可以估計該地學(xué)生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個命題:

①已知-1<ab<0,則0.3aa2ab;

②若正實數(shù)a、b滿足a+b=1,則ab有最大值;

③若正實數(shù)a、b滿足a+b=1,則有最大值;

x,y∈(0,+∞),x3+y3x2y+xy2

其中真命題的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦點坐標是F1(﹣1,0)、F2(1,0),過點F2垂直于長軸的直線l交橢圓C于B、D兩點,且|BD|=3.
(1)求橢圓C的方程;
(2)過定點P(0,2)且斜率為k的直線l與橢圓C相交于不同兩點M,N,試判斷:在x軸上是否存在點A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求的值;

(2)求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上, 的中心和的頂點均為原點,且橢圓經(jīng)過點, ,拋物線過點.

Ⅰ)求的標準方程;

Ⅱ)請問是否存在直線滿足條件:

①過的焦點;②與交不同兩點、且滿足.

若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+log2x+b在區(qū)間( ,4)上有零點,則實數(shù)b的取值范圍是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公比小于1的等比數(shù)列{an}的前n項和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=nan , 求數(shù)列{bn}的前項n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】響應(yīng)“文化強國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.

(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

同步練習(xí)冊答案