拋物線的準線方程為                       。
利用拋物線的標準方程,有2p=, =,可求拋物線的準線方程.
解:拋物線的變形是:焦點在y軸上,且=∴拋物線的準線方程是
故答案為:
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)過軸上的動點,引拋物線兩條切線,為切點。
(Ⅰ)求證:直線過定點,并求出定點坐標;
(Ⅱ)若,設弦的中點為,試求的最小值(為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點在原點, 焦點為F(0, 1).

(Ⅰ) 求拋物線C的方程;
(Ⅱ) 在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q, 滿足PFQF, 且
PQ與C在點P處的切線垂直?
若存在, 求出點P的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與直線的兩個交點分別為A、B,點P在拋物線上從A向B運動(點P不同于點A、B),

(Ⅰ)求由拋物線與直線所圍成的圖形面積;
(Ⅱ)求使⊿PAB的面積為最大時P點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4、且位于x軸上方的點,A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M.

(1)求拋物線方程;
(2)過M作MN⊥FA,垂足為N,求點N的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在拋物線上求一點,使該點到直線的距離最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在拋物線上找一點P,其中,過點P作拋物線的切線,使此切線與拋物線及兩坐標軸所圍平面圖形的面積最小       (   )
   
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線中心在原點,離心率為,若它的一條準線與拋物線y2=4x的準線重合,則該雙曲線與拋物線交點到原點的距離是(    )
A.2+B.C.18+12D.21

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線,圓,(其中為常數(shù))是
直線上的點,傾斜角為銳角的直線過點且與拋物線C交于兩點A、B,與圓M交于C、D兩點.
(1)請寫出直線的參數(shù)方程;
(2)若,且,求的值.

查看答案和解析>>

同步練習冊答案