設p:2x2-3x+1≤0;q:(x-m)(x-m-1)≤0,若p是q的充分不必要條件,求實數(shù)m的取值范圍.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義,轉化為不等式之間的關系即可得到結論.
解答: 解:由2x2-3x+1≤0,則
1
2
≤x≤1,
由(x-m)(x-m-1)≤0,
則m≤x≤m+1,
因為p是q的充分不必要條件,
所以
m≤
1
2
m+1≥1
,
即0≤m≤
1
2
,
所以實數(shù)m的取值范圍是[0,
1
2
]
點評:本題主要考查充分條件和必要條件的應用,求出不等式的等價條件是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x|x|的圖象經(jīng)描點確定后的形狀大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+lnx(a∈R)
(1)若曲線y=f(x)在x=1處的切線與直線x-y=0垂直,試分析方程f(x)=0的解的個數(shù);
(2)若函數(shù)f(x)在[1,2]上單調遞增,求實數(shù)a的取值范圍;
(3)若x>1,求證:4-8ln2+8ln(1+
1
x
)<(1+
1
x
2<8ln(1+
1
x
)+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知⊙P經(jīng)過A(3,-2)、B(2,1)兩點,圓心P在直線x-2y-3=0上.
(1)求⊙P的方程;
(2)設點Q(a,b)是⊙P外一點,以PQ為直徑的圓與⊙P相交于C、D兩點,若QC=QD=2,且C、D所在的直線方程為y=
2
3
,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求點P(-1,2)關于直線l:y=2x+1對稱的點Q的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,P(
a
4
,t)為橢圓C上第一象限的點,過點P作兩互相垂直的直線L1、L2,L1經(jīng)過橢圓C左頂點A,L2經(jīng)過右焦點F2
(1)求橢圓離心率;
(2)將直線L1繞點P逆時針旋轉30°后,直線L1通過左焦點F1,且與橢圓交于B點,此時△PF2B的面積為
35
3
11
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求由兩條曲線y=-x2,4y=-x2及直線y=-1所圍成圖形的面積,并畫出簡圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}為等比數(shù)列,Tn=a1+2a2+…+(n-1)an-1+nan,已知T1=1,T2=5.
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滇星電子科技公司于2013年底已建成了太陽能電池生產線.自2014年1月份產品投產上市一年來,該公司的營銷狀況所反映出的每月獲得的利潤y(萬元)與月份x之間的函數(shù)關系式為:
y=
26x-56   (1≤x≤5,x∈N*)
210-20x  (5<x≤12,x∈N*)

(1)2014年第幾個月該公司的月利潤最大?最大值是多少萬元?
(2)若公司前x個月的月平均利潤w(w=
前x個月的利潤總和
x
)達到最大時,公司下個月就應采取改變營銷模式、拓寬銷售渠道等措施,以保持盈利水平.求w(萬元)與x(月)之間的函數(shù)關系式,并指出這家公司在2009年的第幾個月就應采取措施.

查看答案和解析>>

同步練習冊答案