精英家教網(wǎng)已知橢圓
x22
+y2=1
的左焦點為F,O為坐標原點.
(I)求過點O、F,并且與橢圓的左準線l相切的圓的方程;
(II)設(shè)過點F且不與坐標軸垂直的直線交橢圓于A、B兩點,
線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
分析:(1)欲求圓的方程,關(guān)鍵是確定圓的圓心和半徑,因為點O、F都在x軸上,所以圓心必在線段OF的垂直平分線上即在平行于y軸的直線上,結(jié)合圓與左準線l相切,可求得半徑,進而求得圓心坐標;
(2)欲求點G橫坐標的取值范圍,從函數(shù)思想的角度考慮,先將其表示成某一變量的函數(shù),后求函數(shù)的值域,這里取直線AB的斜率K為自變量,通過解方程組求得點G橫坐標(用k表示),再求其取值范圍.
解答:精英家教網(wǎng)解:(I)∵a2=2,b2=1,
∴c=1,F(xiàn)(-1,0),l:x=-2.
∵圓過點O、F,
∴圓心M在直線x=-
1
2
上.
設(shè)M(-
1
2
,t)
,則圓半徑r=|(-
1
2
)-(-2)|=
3
2

由|OM|=r,得
(-
1
2
)
2
+t2
=
3
2
,
解得t=±
2

∴所求圓的方程為(x+
1
2
)2+(y±
2
)2=
9
4


(II)設(shè)直線AB的方程為y=k(x+1)(k≠0),
代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.
∵直線AB過橢圓的左焦點F,∴方程有兩個不等實根.
記A(x1,y1),B(x2,y2),AB中點N(x0,y0),
x1+x2=-
4k2
2k2+1
,x0=-
2k2
2k2+1
,y0=k(x0+1)=
k
2k2+1

∴AB的垂直平分線NG的方程為y-y0=-
1
k
(x-x0)

令y=0,得xG=x0+ky0=-
2k2
2k2+1
+
k2
2k2+1
=-
k2
2k2+1
=-
1
2
+
1
4k2+2

∵k≠0,∴-
1
2
xG<0
,
∴點G橫坐標的取值范圍為(-
1
2
,0)
點評:本小題主要考查直線、圓、橢圓和不等式等基本知識,考查平面解析幾何的基本方法,考查運算能力和綜合解題能力,直線與圓錐曲線的位置關(guān)系問題,通常是先聯(lián)立組成方程組,消去x(或y),得到y(tǒng)(或x)的方程.我們在研究圓錐曲線時,經(jīng)常涉及到直線與圓錐曲線的位置關(guān)系的研究.主要涉及到:交點問題、弦長問題、弦中點(中點弦)等問題,常用的方法:聯(lián)立方程組,借助于判別式,數(shù)形結(jié)合法等.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x22
+y2=1
的右準線l與x軸相交于點E,過橢圓右焦點F的直線與橢圓相交于A、B兩點,點C在右準線l上,且BC∥x軸?求證直線AC經(jīng)過線段EF的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓
x22
+y2=1
的左焦點為F,O為坐標原點.
(I)求過點O、F,并且與橢圓的左準線l相切的圓的方程;
(II)設(shè)過點F的直線交橢圓于A、B兩點,并且線段AB的中點在直線x+y=0上,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
2
+y2=1
的左焦點為F,O為坐標原點.過點F的直線l交橢圓于A、B兩點.
(1)若直線l的傾斜角α=
π
4
,求|AB|;
(2)求弦AB的中點M的軌跡方程;
(3)設(shè)過點F且不與坐標軸垂直的直線交橢圓于A、B兩點,
線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x22
+y2=1的左、右焦點為F1、F2,上頂點為A,直線AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點O為坐標原點.
( I ) 求三棱錐A-F1F2B的體積;
(Ⅱ)圖2中線段BF2上是否存在點M,使得AM⊥OB,若存在,請在圖1中指出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)如圖,已知橢圓
x2
2
+y2=1
內(nèi)有一點M,過M作兩條動直線AC、BD分別交橢圓于A、C和B、D兩點,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)證明:AC⊥BD;
(2)若M點恰好為橢圓中心O
(i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請說明理由.
(ii)求弦AB長的最小值.

查看答案和解析>>

同步練習冊答案