某校高一年級開設(shè)研究性學(xué)習(xí)課程,(1)班和(2)班報(bào)名參加的人數(shù)分別是18和27.現(xiàn)用分層抽樣的方法,從中抽取若干名學(xué)生組成研究性學(xué)習(xí)小組,已知從(2)班抽取了3名同學(xué).
(Ⅰ)求研究性學(xué)習(xí)小組的人數(shù);
(Ⅱ)規(guī)劃在研究性學(xué)習(xí)的中、后期各安排1次交流活動,每次隨機(jī)抽取小組中1名同學(xué)發(fā)言.求2次發(fā)言的學(xué)生恰好來自不同班級的概率.

(Ⅰ)解:設(shè)從(1)班抽取的人數(shù)為m,根據(jù)分層抽樣的定義和方法,得 ,所以m=2,
研究性學(xué)習(xí)小組的人數(shù)為m+3=5. …(5分)
(Ⅱ)設(shè)研究性學(xué)習(xí)小組中(1)班的2人為a1,a2,(2)班的3人為b1,b2,b3.2次交流活動中,每次隨機(jī)抽取1名同學(xué)發(fā)言的基本事件為:
(a1,a1),(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,a1),(a2,a2),(a2,b1),(a2,b2),(a2,b3),(b1,a1),(b1,a2),
(b1,b1),(b1,b2),(b1,b3),(b2,a1),(b2,a2),(b2,b1),(b2,b2),(b2,b3),(b3,a1),(b3,a2),(b3,b1),(b3,b2),(b3,b3),
共25種. …(9分)
2次發(fā)言的學(xué)生恰好來自不同班級的基本事件為:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,a1),(b1,a2),(b2,a1),
(b2,a2),(b3,a1),(b3,a2),共12種. …(12分)
所以2次發(fā)言的學(xué)生恰好來自不同班級的概率為. …(13分)
分析:(Ⅰ)設(shè)從(1)班抽取的人數(shù)為m,根據(jù)分層抽樣的定義和方法,可得 ,所以m=2,由此求得研究性學(xué)習(xí)小組的人數(shù).
(Ⅱ)設(shè)研究性學(xué)習(xí)小組中(1)班的2人為a1,a2,(2)班的3人為b1,b2,b3.2次交流活動中,每次隨機(jī)抽取1名同學(xué)發(fā)言的基本事件一一列舉共25個(gè),滿足條件的有12個(gè),由此求得
2次發(fā)言的學(xué)生恰好來自不同班級的概率.
點(diǎn)評:本題考查古典概型問題,分層抽樣的定義和方法,可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,應(yīng)用列舉法來解題是這一部分的最主要思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)某校為全面推進(jìn)新課程改革,在高一年級開設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為
12

(1)求該小組做了5次這種實(shí)驗(yàn)至少有2次成功的概率.
(2)如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過5次,求該小組所做實(shí)驗(yàn)的次數(shù)ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為全面推進(jìn)新課程改革,在高一年級開設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為
12

(1)求該小組做了5次這種實(shí)驗(yàn)僅有2次成功的概率.
(2)如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過5次,求該小組所做實(shí)驗(yàn)的次數(shù)最少有4次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校為全面推進(jìn)新課程改革,在高一年級開設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為數(shù)學(xué)公式
(1)求該小組做了5次這種實(shí)驗(yàn)僅有2次成功的概率.
(2)如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過5次,求該小組所做實(shí)驗(yàn)的次數(shù)最少有4次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《概率》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(浙江大學(xué)附中)(解析版) 題型:解答題

某校為全面推進(jìn)新課程改革,在高一年級開設(shè)了研究性學(xué)習(xí)課程,某班學(xué)生在一次研究活動課程中,一個(gè)小組進(jìn)行一種驗(yàn)證性實(shí)驗(yàn),已知該種實(shí)驗(yàn)每次實(shí)驗(yàn)成功的概率為
(1)求該小組做了5次這種實(shí)驗(yàn)至少有2次成功的概率.
(2)如果在若干次實(shí)驗(yàn)中累計(jì)有兩次成功就停止實(shí)驗(yàn),否則將繼續(xù)下次實(shí)驗(yàn),但實(shí)驗(yàn)的總次數(shù)不超過5次,求該小組所做實(shí)驗(yàn)的次數(shù)ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案