【題目】已知命題 : 表示雙曲線,命題 : 表示橢圓。
(1)若命題與命題 都為真命題,則 是 的什么條件?
(請(qǐng)用簡(jiǎn)要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個(gè))
(2)若 為假命題,且 為真命題,求實(shí)數(shù) 的取值范圍.
【答案】(1) 是 的必要不充分條件(2) 或。
【解析】試題分析:(1) 根據(jù)雙曲線的定義,若命題為真命題則 ,若 都為真命題則 或,由,可得 是 的必要不充分條件;(2)由 為假命題,且 為真命題,可得一真一假,分兩種情況討論,對(duì)于真假以及假真分別列不等式組,分別解不等式組,然后求并集即可求得實(shí)數(shù)的取值范圍..
試題解析:(1)∵命題 : 表示雙曲線是真命題,
∴ ,
解得 ,
又∵命題 : 表示橢圓是真命題,
∴
解得 或
∵
∴ 是 的必要不充分條件,
(2)∵ 為假命題,且 為真命題
∴ 、 為“一真一假”,
當(dāng) 真 假時(shí),由(1)可知,
為真,有 ,①
為假, 或 或 ②
由①②解得 或
當(dāng) 假真時(shí),由(1)可知,
為假,有 或 ,③
為真,有 或 ④
由③④解得,無解
綜上,可得實(shí)數(shù) 的取值范圍為 或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)分別為橢圓的左右兩個(gè)焦點(diǎn).
(1)若橢圓上的點(diǎn)到兩點(diǎn)的距離之和等于4,寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):如果是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么與之積是與點(diǎn)位置無關(guān)的定值,請(qǐng)給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入( )
A.n≤8?
B.n>8?
C.n≤7?
D.n>7?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),且.
(Ⅰ)求的定義域;
(Ⅱ)判斷的奇偶性并予以證明;
(Ⅲ)當(dāng)時(shí),求使的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠ (k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函數(shù)f(x)=dsin(wx+4d)(w>0)滿足:在 上單調(diào)且存在 ,則w范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點(diǎn)數(shù)之和不超過5的概率記為p1,點(diǎn)數(shù)之和大于5的概率記為p2,點(diǎn)數(shù)之和為偶數(shù)的概率記為p3,則( )
A. p1<p2<p3 B. p2<p1<p3
C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).
(1)如果函數(shù)在x=1處有極值試確定b、c的值;
(2)設(shè)當(dāng)時(shí),函數(shù)圖象上任一點(diǎn)P處的切線斜率為k,若,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,P點(diǎn)的極坐標(biāo)為 ,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)P,斜率為
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖下圖①,等邊三角形ABC的邊長(zhǎng)為2a,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊上的點(diǎn),且滿足=k,現(xiàn)將△ABC沿CD翻折成直二面角ADCB,如圖下圖②.
(1)試判斷翻折后直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求二面角BACD的正切值.
① 、
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com