已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果數(shù)列{bn}前3項(xiàng)的和等于
7
24
,求數(shù)列{an}的首項(xiàng)a1和公差d.
分析:(Ⅰ)設(shè){an}中首項(xiàng)為a1,公差為d.lga1,lga2,lga4成等差數(shù)列,把11和d代入求得d,進(jìn)而分別當(dāng)d=0,整理可得 bn+1•bn=1,進(jìn)而判斷出{bn}為等比數(shù)列;進(jìn)而討論d=a1時(shí),整理即可判斷出{bn}為等比數(shù)列.
(Ⅱ)把第一問所求結(jié)論分別代入即可求出數(shù)列{an}的首項(xiàng)a1和公差d.
解答:解:(Ⅰ)證明:設(shè){an}中首項(xiàng)為a1,公差為d.
∵lga1,lga2,lga4成等差數(shù)列∴2lga2=lga1+lga4
∴a22=a1•a4
即(a1+d)2=a1(a1+3d)∴d=0或d=a1
當(dāng)d=0時(shí),an=a1,bn=
1
a2n
=
1
a1
,∴
bn+1
bn
=1,∴{bn}為等比數(shù)列;
當(dāng)d=a1時(shí),an=na1,bn=
1
a2n
=
1
2na1
,∴
bn+1
bn
=
1
2
,∴{bn}為等比數(shù)列.
綜上可知{bn}為等比數(shù)列.
(Ⅱ)當(dāng)d=0時(shí),s3=b1+b2+b3=
3
a1
=
7
24
,所以a1=
72
7
;
當(dāng)d=a1時(shí),S3=
1
21a1
+
1
22a1
+
1
23a1
=
7
24

所以
7
8a1
=
7
24
,故a1=3=d.
綜上可知
a1=
72
7
d=0
a1=3
d=3
點(diǎn)評:本題主要考查等差數(shù)列與等比數(shù)列的綜合以及分類討論思想的應(yīng)用,涉及數(shù)列的公式多,復(fù)雜多樣,故應(yīng)多下點(diǎn)功夫記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無窮等比數(shù)列{bn}各項(xiàng)的和S=
1
3
,求數(shù)列{an}的首項(xiàng)a1和公差d.
(注:無窮數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)數(shù)列前項(xiàng)和的極限)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等差數(shù)列,lga1,lga2,lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果數(shù)列{bn}前3項(xiàng)的和等于
7
24
,求數(shù)列{an}的首項(xiàng)a1和公差d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列a1+a2=2(
1
a1
+
1
a2
),a3+a4+a5=64(
1
a3
+
1
a4
+
1
a5

(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(an+
1
an
2,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=2(
1
a1
+
1
a2
),a3+a4=32(
1
a3
+
1
a4
)

(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an2+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1與a5的等比中項(xiàng)為2,則a2+a4的最小值等于
 

查看答案和解析>>

同步練習(xí)冊答案