【題目】2018年2月25日,平昌冬奧會閉幕式上的“北京8分鐘”驚艷了世界。我們學(xué)校為了讓我們更好的了解奧運,了解新時代祖國的科技發(fā)展,在高二年級舉辦了一次知識問答比賽。比賽共設(shè)三關(guān),第一、二關(guān)各有兩個問題,兩個問題全答對,可進入下一關(guān);第三關(guān)有三個問題,只要答對其中兩個問題,則闖關(guān)成功。每過一關(guān)可一次性獲得分別為1、2、3分的積分獎勵,高二、一班對三關(guān)中每個問題回答正確的概率依次為,且每個問題回答正確與否相互獨立.
(1)記表示事件“高二、一班未闖到第三關(guān)”,求的值;
(2)記表示高二、一班所獲得的積分總數(shù),求的分布列和期望.
【答案】(1);(2).
【解析】試題分析:(1)方法一、令表示事件“高二、一班闖過第一關(guān)”, 表示事件“高二、一班闖過第二關(guān)”,根據(jù)題設(shè)條件分別求出和,根據(jù),即可求出的值;方法二、根據(jù) ,即可求出的值;(2)隨機變量X的取值為:0,1,3,6,分別求出相對應(yīng)的概率,從而能求出的分布列和期望.
試題解析:(1)方法一、令表示事件“高二、一班闖過第一關(guān)”, 表示事件“高二、一班闖過第二關(guān)”, ,
則;
方法二、.
(2)隨機變量X的取值為:0,1,3,6,則
, ,
,
,
X | 0 | 1 | 3 | 6 |
P |
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)討論的單調(diào)性;
(2)設(shè)函數(shù),當(dāng)時,若,,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩焦點分別為,其短半軸長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線與橢圓相交于兩點.若直線與的斜率之和為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有5張編號依次為1,2,3,4,5的卡片,這5張卡片除號碼外完全相同,現(xiàn)進行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求事件“取出卡片的號碼之和不小于7”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若不等式對任意的正實數(shù)都成立,求實數(shù)的最大整數(shù);
(3)當(dāng)時,若存在實數(shù)且,使得,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形是直角梯形,,,,平面平面.
(1)求證:平面;
(2)在線段上是否存在一點,使得平面與平面所成的銳二面角的余弦值為,若存在,求出點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com