已知數(shù)列{an}的前n項和為Sn=(n+1)2+c,探究{an}是等差數(shù)列的充要條件.

{an}為等差數(shù)列的充要條件是c=-1
主要考查充要條件的概念及充要條件的判定方法。
解 當{an}是等差數(shù)列時,∵Sn=(n+1)2+c,
∴當n≥2時,Sn-1=n2+c,
∴an=Sn-Sn-1=2n+1,
∴an+1-an=2為常數(shù).
又a1=S1=4+c,
∴a2-a1=5-(4+c)=1-c,
∵{an}是等差數(shù)列,∴a2-a1=2,∴1-c=2.
∴c=-1,反之,當c=-1時,Sn=n2+2n,
可得an=2n+1 (n≥1)為等差數(shù)列,
∴{an}為等差數(shù)列的充要條件是c=-1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案