已知橢圓的左右焦點分別為、,離心率,直線經過左焦點.
(1)求橢圓的方程;
(2)若為橢圓上的點,求的范圍.

(1)(2)

解析試題分析:解:(1)直線的交點的坐標為,             1分
的坐標為.                                     2分
設焦距為2,則.
  , .            5分
則橢圓的方程為.                           6分
(2)當點在橢圓的左右頂點時,;         7分
點不在橢圓的左右頂點時,由定義可知:
.
當且僅當時 “”成立;                   9分
中有
 10分
,        12分
;                            13分
由上述可得的取值范圍為.                         14分
考點:橢圓的方程,余弦定理
點評:考查了橢圓的性質來求解方程,以及結合三角形中的余弦定理來得到角的范圍,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的右焦點為,直線軸交于點,若(其中為坐標原點).
(I)求橢圓的方程;
(II)設是橢圓上的任意一點,為圓的任意一條直徑(、為直徑的兩個端點),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若直線過雙曲線的一個焦點,且與雙曲線的一條漸近線平行.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若過點軸不平行的直線與雙曲線相交于不同的兩點的垂直平分線為,求直線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知直線與拋物線相切于點,且與軸交于點為坐標原點,定點的坐標為.

(1)若動點滿足,求點的軌跡;
(2)若過點的直線(斜率不等于零)與(1)中的軌跡交于不同的兩點之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓(a>b>0)的離心率為,以原點為圓心,橢圓短半軸長半徑的圓與直線y=x+ 相切.
(1)求橢圓的方程;
(2)設直線與橢圓在軸上方的一個交點為,是橢圓的右焦點,試探究以
直徑的圓與以橢圓長軸為直徑的圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓具有性質:若是橢圓為常數(shù)上關于原點對稱的兩點,點是橢圓上的任意一點,若直線的斜率都存在,并分別記為,,那么之積是與點位置無關的定值
試對雙曲線為常數(shù)寫出類似的性質,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在橢圓上找一點,使這一點到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩個焦點,過且與坐標軸不平行的直線與橢圓交于兩點,如果的周長等于8。
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標及定值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

ABC的兩個頂點坐標分別是B(0,6)和C(0,-6),另兩邊ABAC的斜率的乘積是-,求頂點A的軌跡方程.?

查看答案和解析>>

同步練習冊答案