在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,如果a2+b2-c2<0,那么△ABC是( 。
A、銳角三角形
B、直角三角形
C、等腰三角形
D、鈍角三角形
考點(diǎn):余弦定理的應(yīng)用
專題:計(jì)算題,解三角形
分析:由于 a2+b2-c2<0,△ABC中,由余弦定理可得 cosC=
a2+b2-c2
2ab
<0,故角C為鈍角,從而得出結(jié)論.
解答: 解:由于a2+b2-c2<0,△ABC中,由余弦定理可得cosC=
a2+b2-c2
2ab
<0,
故角C為鈍角,故△ABC為鈍角三角形,
故選D.
點(diǎn)評(píng):本題考查余弦定理的應(yīng)用,得到cosC=
a2+b2-c2
2ab
<0,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在1和15之間插入兩數(shù),使前三數(shù)成等比數(shù)列,后三數(shù)成等差數(shù)列,求這兩個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,{bn}為等比數(shù)列,且滿足a1003+a1013=π,b6•b9=2,則tan
a1+a2015
1+b7b8
( 。
A、1
B、-1
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{(-1)n•n}的前2015項(xiàng)的和S2015為( 。
A、-2013B、-1008
C、2013D、1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(x-
π
3
)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的兩倍,縱坐標(biāo)不變,再向左平移
π
6
個(gè)單位所得函數(shù)圖象的一條對(duì)稱軸是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ)(|φ|<π)的圖象向左平移
π
6
個(gè)單位后得到g(x)=cos(2x+
π
6
),則φ的值為( 。
A、-
3
B、-
π
3
C、
π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-sinβ=-
1
3
,cosα-cosβ=
1
2
,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定點(diǎn)F1(-3,0),F(xiàn)2(3,0),動(dòng)點(diǎn)P(x,y)滿足條件|PF1|+|PF2|=6,則動(dòng)點(diǎn)P的軌跡是( 。
A、橢圓B、線段
C、雙曲線D、橢圓或線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(1,2)的直線l與圓C:(x-3)2+( y-4)2=25交于A、B兩點(diǎn),C為圓心,當(dāng)∠ACB最小時(shí),直線l的方程是(  )
A、x-2y+3=0
B、2x+y-4=0
C、x-y+1=0
D、x+y-3=0

查看答案和解析>>

同步練習(xí)冊(cè)答案