【題目】已知函數(shù)f(x)=.(a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).
【答案】見(jiàn)解析
【解析】(1)證明:當(dāng)x≥1時(shí),f′(x)=-1≤0,f(x)在[1,+∞)上單調(diào)遞減,f(x)≤f(1)=0;
當(dāng)x<1時(shí),f′(x)=ex-1-1<0,f(x)在(-∞,1)上單調(diào)遞減,且此時(shí)f(x)>0.
所以y=f(x)在R上單調(diào)遞減.
(2)若x≥a,則f′(x)=-a≤-a<0(a>1),
所以此時(shí)f(x)單調(diào)遞減,令g(a)=f(a)=ln a-a2+1,
則g′(a)=-2a<0,所以f(a)=g(a)<g(1)=0,
即f(x)≤f(a)<0,故f(x)在[a,+∞)上無(wú)零點(diǎn).
當(dāng)x<a時(shí),f′(x)=ex-1+a-2,
①當(dāng)a>2時(shí),f′(x)>0,f(x)單調(diào)遞增,
又f(0)=e-1>0,f<0,所以此時(shí)f(x)在上有一個(gè)零點(diǎn).
②當(dāng)a=2時(shí),f(x)=ex-1,此時(shí)f(x)在(-∞,2)上沒(méi)有零點(diǎn).
③當(dāng)1<a<2時(shí),令f′(x0)=0,解得x0=ln(2-a)+1<1<a,所以f(x)在(-∞,x0)上單調(diào)遞減,在(x0,a)上單調(diào)遞增.
f(x0)=e+(a-2)x0=e (1-x0)>0,
所以此時(shí)f(x)沒(méi)有零點(diǎn).
綜上,當(dāng)1<a≤2時(shí),f(x)沒(méi)有零點(diǎn);當(dāng)a>2時(shí),f(x)有一個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2016年高考四川理數(shù)】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電視劇《人民的名義》中有一個(gè)低矮的接待上訪服務(wù)窗口,假設(shè)群眾辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是10分鐘的整數(shù)倍,對(duì)以往群眾辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間(分) | 10 | 20 | 30 | 40 | 50 |
頻率 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 |
假設(shè)排隊(duì)等待辦理業(yè)務(wù)的群眾不少于3人,從第一個(gè)群眾開(kāi)始辦理業(yè)務(wù)時(shí)開(kāi)始計(jì)時(shí).
(Ⅰ)估計(jì)第三個(gè)群眾恰好等待40分鐘開(kāi)始辦理業(yè)務(wù)的概率;
(Ⅱ)表示至第20分鐘末已辦理完業(yè)務(wù)的群眾人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在等腰梯形中, , 是梯形的高, , ,現(xiàn)將梯形沿, 折起,使且,得一簡(jiǎn)單組合體如 圖(2)示,已知, 分別為, 的中點(diǎn).
(1)求證: 平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】社會(huì)調(diào)查人員希望從對(duì)人群的隨機(jī)抽樣調(diào)查中得到對(duì)他們所提問(wèn)題誠(chéng)實(shí)的回答,但是被采訪者常常不愿意如實(shí)做出應(yīng)答.
1965年Stanley·L.Warner發(fā)明了一種應(yīng)用概率知識(shí)來(lái)消除這種不愿意情緒的方法.Warner的隨機(jī)化應(yīng)答方法要求人們隨機(jī)地回答所提問(wèn)題中的一個(gè),而不必告訴采訪者回答的是哪個(gè)問(wèn)題,兩個(gè)問(wèn)題中有一個(gè)是敏感的或者是令人為難的,另一個(gè)是無(wú)關(guān)緊要的,這樣應(yīng)答者將樂(lè)意如實(shí)地回答問(wèn)題,因?yàn)橹挥兴雷约夯卮鸬氖悄膫(gè)問(wèn)題.
假如在調(diào)查運(yùn)動(dòng)員服用興奮劑情況的時(shí)候,無(wú)關(guān)緊要的問(wèn)題是:你的身份證號(hào)碼的尾數(shù)是奇數(shù)嗎;敏感的問(wèn)題是:你服用過(guò)興奮劑嗎.然后要求被調(diào)查的運(yùn)動(dòng)員擲一枚硬幣,如果出現(xiàn)正面,就回答第一個(gè)問(wèn)題,否則回答第二個(gè)問(wèn)題.
例如我們把這個(gè)方法用于200個(gè)被調(diào)查的運(yùn)動(dòng)員,得到56個(gè)“是”的回答,請(qǐng)你估計(jì)這群運(yùn)動(dòng)員中大約有百分之幾的人服用過(guò)興奮劑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為公差不為零的等差數(shù)列,首項(xiàng), 的部分項(xiàng)、、 、恰為等比數(shù)列,且,,.
(1)求數(shù)列的通項(xiàng)公式(用表示);
(2)設(shè)數(shù)列的前項(xiàng)和為, 求證: (是正整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2011年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(Ⅰ)分別求第3,4,5組的頻率;
(Ⅱ)若該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(Ⅲ)在(Ⅱ)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量a=,b=,且x∈.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-2x+m,其中m為常數(shù).
(1)求證:函數(shù)f(x)在R上是減函數(shù);
(2)當(dāng)函數(shù)f(x)是奇函數(shù)時(shí),求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com