精英家教網 > 高中數學 > 題目詳情

(本小題滿分10分)選修4—4:坐標系與參數方程

在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,得曲線的極坐標方程為).

(1)化曲線、的方程為普通方程,并說明它們分別表示什么曲線;

(2)設曲線軸的一個交點的坐標為),經過點作曲線的切線,求切線的方程.

 

 

【答案】

 

(Ⅰ)曲線;曲線;……3分

曲線為中心是坐標原點,焦點在軸上,長半軸長是4,短半軸長是2的橢圓;曲線為圓心為,半徑為的圓……5分

(Ⅱ)曲線軸的交點坐標為,因為,所以點的坐標為,……7分    顯然切線的斜率存在,設為,則切線的方程為

,由曲線為圓心為,半徑為的圓得 ,

解得,所以切線的方程為……10分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數方程為
x=
1
2
t
y=
3
2
t+1
(t為參數),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數,求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數學 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數,且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數學 來源: 題型:

必做題:(本小題滿分10分,請在答題指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數.
(Ⅰ)求an;
(Ⅱ)是否存在等差數列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數n都成立?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分10分)數學的美是令人驚異的!如三位數153,它滿足153=13+53+33,即這個整數等于它各位上的數字的立方的和,我們稱這樣的數為“水仙花數”.請您設計一個算法,找出大于100,小于1000的所有“水仙花數”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

(選修4-2:矩陣與變換)(本小題滿分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

同步練習冊答案