【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過(guò)點(diǎn)E作球O的截面,則截面面積的最小值是( 。

A.
B.2π
C.
D.3π

【答案】C
【解析】解:設(shè)正△ABC的中心為O1 , 連結(jié)O1A
∵O1是正△ABC的中心,A、B、C三點(diǎn)都在球面上,
∴O1O⊥平面ABC,∵球的半徑R=2,球心O到平面ABC的距離為1,得O1O=1,
∴Rt△O1OA中,O1A=
又∵E為BC的中點(diǎn),△ABC是等邊三角形,∴AE=AO1cos30°=
∵過(guò)E作球O的截面,當(dāng)截面與OE垂直時(shí),截面圓的半徑最小,
∴當(dāng)截面與OE垂直時(shí),截面圓的面積有最小值.
此時(shí)截面圓的半徑r= ,
可得截面面積為S=πr2=π.
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、分別是橢圓的左頂點(diǎn)、右焦點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),當(dāng)軸時(shí), .

(1)求橢圓的離心率;

(2)若橢圓存在點(diǎn),使得四邊形是平行四邊形(點(diǎn)在第一象限),求直線的斜率之積;

(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過(guò)點(diǎn)作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點(diǎn)為、,直線的橫、縱截距分別為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)請(qǐng)畫出該幾何體的三視圖;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過(guò)點(diǎn)A(﹣3,4)
(1)若l與直線y=﹣2x+5平行,求其一般式方程;
(2)若l與直線y=﹣2x+5垂直,求其一般式方程;
(3)若l與兩個(gè)坐標(biāo)軸的截距之和等于12,求其一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線的斜率分別為,求直線被圓截得弦長(zhǎng)的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題:已知實(shí)數(shù), 滿足約束條件,二元一次不等式恒成立,

命題:設(shè)數(shù)列的通項(xiàng)公式為,若,使得

(1)分別求出使命題, 為真時(shí),實(shí)數(shù)的取值范圍;

(2)若命題真假相同,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,若直線的參數(shù)方程為為參數(shù), 的傾斜角),曲線的極坐標(biāo)方程為,射線, 與曲線分別交于不同于極點(diǎn)的三點(diǎn).

(1)求證: ;

(2)當(dāng)時(shí),直線過(guò)兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃銷售某種產(chǎn)品,先試銷該產(chǎn)品天,對(duì)這天日銷售量進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖.

(Ⅰ)若已知銷售量低于50的天數(shù)為23,求;

(Ⅱ)廠家對(duì)該超市銷售這種產(chǎn)品的日返利方案為:每天固定返利45元,另外每銷售一件產(chǎn)品,返利3元;頻率估計(jì)為概率.依此方案,估計(jì)日返利額的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+1)x+1(a∈R)
(1)若關(guān)于x的不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)≤0的解集為P,集合Q={x|0≤x≤1},若P∩Q=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案