圓x2+y2=1在矩陣A對(duì)應(yīng)的伸壓變換下變?yōu)闄E圓,則矩陣A是( )

A. B. C. D.

 

A

【解析】

試題分析:設(shè)P(x,y)為圓C上的任意一點(diǎn),在矩陣A對(duì)應(yīng)的變換下變?yōu)榱硪粋(gè)點(diǎn)P'(x',y'),代入橢圓方程,對(duì)照?qǐng)A的方程與橢圓方程可得(x',y')與(x,y)的關(guān)系,然后寫(xiě)出矩陣乘法的形式可求出所求.

【解析】
設(shè)P(x,y)為圓C上的任意一點(diǎn),在矩陣A對(duì)應(yīng)的變換下變?yōu)榱硪粋(gè)點(diǎn)P'(x',y'),

=

故A=

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 3.2二階行列式與逆矩陣練習(xí)卷(解析版) 題型:填空題

(2013•徐匯區(qū)一模)方程組的增廣矩陣是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 2.2矩陣乘法的性質(zhì)練習(xí)卷(解析版) 題型:填空題

若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的 .

①m×m,②m×n,③n×m,④n×n.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 2.1復(fù)合變換與二階矩陣的乘法(解析版) 題型:填空題

已知曲線C:x2+y2=1,對(duì)它先作矩陣A=對(duì)應(yīng)的變換,再作矩陣B=對(duì)應(yīng)的變換,得到曲線C:+y2=1.則實(shí)數(shù)b= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•鎮(zhèn)江二模)已知點(diǎn)M(3,﹣1)繞原點(diǎn)按逆時(shí)針旋轉(zhuǎn)90°后,且在矩陣A=對(duì)應(yīng)的變換作用下,得到點(diǎn)N(3,5),求a,b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:選擇題

已知A(0,0),B(2,0),C(1,2)對(duì)△ABC依次作矩陣對(duì)應(yīng)的變換,變換后的圖形面積為( )

A.2 B.6 C.12 D.24

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:填空題

(2014•江蘇模擬)已知矩陣A=,向量=.求向量,使得A2=

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-2 1.2二階矩陣與平面向量的乘法(解析版) 題型:選擇題

定義行列式運(yùn)算,將函數(shù)的圖象向右平移φ(φ>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則φ的最小值為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

在底面半徑為6的圓柱內(nèi),有兩個(gè)半徑也為6的球面,兩球的球心距為13,若作一個(gè)平面與兩個(gè)球都相切,且與圓柱面相交成一橢圓,則橢圓的長(zhǎng)軸長(zhǎng)為 .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案