以雙曲線y2-
x2
3
=1的上焦點(diǎn)為圓心,與該雙曲線的漸近線相切的圓的方程為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出其焦點(diǎn)坐標(biāo)及漸近線方程;再利用點(diǎn)到直線的距離公式求出圓的半徑,即可得到所求圓的方程.
解答: 解:雙曲線y2-
x2
3
=1的離心率e=2,上焦點(diǎn)為F(0,2),一條漸近線方程為x+
3
y=0,
∴F(0,2)到漸近線的距離為
2
3
1+3
=
3

∴以雙曲線y2-
x2
3
=1的上焦點(diǎn)為圓心,與該雙曲線的漸近線相切的圓的方程為x2+(y-2)2=3.
故答案為:x2+(y-2)2=3.
點(diǎn)評:本題主要考查雙曲線的基本性質(zhì).在求雙曲線的漸近線方程時(shí),一定要先判斷出焦點(diǎn)所在位置,以免出錯(cuò).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
x
-log2x+1的零點(diǎn)所在區(qū)間為( 。
A、(
1
2
,1)
B、(1,2)
C、(2,4)
D、(4,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位組織50名志愿者利用周末和節(jié)假日參加社會(huì)公益活動(dòng),活動(dòng)內(nèi)容是:1.到各社會(huì)宣傳慰問,倡導(dǎo)文明新風(fēng);2.到指定的社區(qū)、車站、碼頭做義工,幫助那些需要幫助的人.各位志愿者根據(jù)各自的實(shí)際情況,選擇了不同的活動(dòng)項(xiàng)目,相關(guān)的數(shù)據(jù)如下表所示:
宣傳慰問義工救助總計(jì)
20至40歲111627
大于40歲15823
總計(jì)262450
(1)用分層抽樣的方法在做義工的志愿者中隨機(jī)抽取6名,大于40歲的應(yīng)該抽取幾名?
(2)在上述抽取的6名志愿者中任取2名,求恰有1名志愿者年齡大于40歲的概率.
(3)如果“宣傳慰問”與“做義工”是兩個(gè)分類變量,并且計(jì)算出隨機(jī)變量k2=2.981,那么你有多大把握認(rèn)為選擇做宣傳慰問與做義工是與年齡有關(guān)系的?
參考數(shù)據(jù)P(k2≥x00.150.100.050.0250.0100.005
x02.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線2x-y-1=0和y=kx+1互相垂直,則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2﹙a+1﹚x+a2-1=0},B={x|x2+4x=0}.A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)f(x)=
ln(x+1)
x
(x>0),求證:若m>n>0,則f(m)<f(n).
(2)求g(x)=lnx-ax2在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若a≥2-4ln2,求證:函數(shù)f(x)在(0,
1
2
)上無零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
1
2
ax2-(1+a)x(a∈R)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)f(x)在(2,3)上有極值點(diǎn),求a的范圍;
(3)求證:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n(n-1)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x•ex的單調(diào)遞減區(qū)間為
 
,其最小值是
 

查看答案和解析>>

同步練習(xí)冊答案