設(shè)P是雙曲線x2-
y2
3
=1的右支上的動點,F(xiàn)為雙曲線的右焦點,已知A(3,1),則|PA|+|PF|的最小值為
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)雙曲線左焦點為F2,根據(jù)雙曲線的定義可知|PA|+|PF|=|PF2|-2a+|PA|,進而可知當(dāng)P、F2、A三點共線時有最小值,根據(jù)雙曲線方程可求F2的坐標,此時|PF2|+|PA|=|AF2|,利用兩點間的距離公式求得答案.
解答: 解:設(shè)雙曲線左焦點為F2
由雙曲線的定義可得|PF2|-|PF|=2a,即|PF|=|PF2|-2a,
則|PA|+|PF|=|PF2|+|PA|-2a≥|F2A|-2a,
當(dāng)P、F2、A三點共線時,|PF2|+|PA|有最小值,
此時F2(-2,0)、A(3,1),
則|PF2|+|PA|=|AF2|=
26

而對于這個雙曲線,2a=2,
所以最小值為
26
-2.
故答案為:
26
-2.
點評:本題主要考查了雙曲線的定義,考查了兩點的距離公式,運用兩點間線段最短是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義域為R的偶函數(shù).當(dāng)x≥0時,f(x)=
5
4
sin(
π
2
x)(0≤x≤1)
(
1
4
)x+1(x>1)
,若關(guān)于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R),有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是(  )
A、0<a<1或a=
5
4
B、0≤a≤1或a=
5
4
C、0<a≤1或a=
5
4
D、1<a≤
5
4
或a=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓的中心及兩個焦點將兩條準線之間的距離四等分,則橢圓的離心率為( 。
A、
1
2
B、
2
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xOy中,點F(0,1),直線l:y=-1,點P在直線l上移動,R是線段PF與x軸的交點,過點R,P分別作直線l1,l2,使得l1⊥PF,l2⊥l,l1∩l2=Q.
(1)求動點Q的軌跡C的方程;
(2)設(shè)N為軌跡C上的動點,是否在y軸上存在定點E,使得以NE為直徑的圓被直線y=3截得的弦長恒為定值?若存在,求出定點E和弦長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|2012≤x≤2013},Q={x|a-1≤x≤a},若P⊆Q,實數(shù)a的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a3=3,a7=7,其通項公式為an,前n項和為Sn;
(1)求an與Sn
(2)若bn=2an,試求數(shù)列{bn}的前n項和Tn
(3)若kn=
1
Sn
,試求數(shù)列{kn}的前n項和Qn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)3
x
+2
y
=
a
,2
x
-
y
=
b
a
,
b
為已知向量),則
x
=
 
y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則an=( 。
A、
n
2n-1
B、
n+1
2n-1+1
C、
2n-1
2n-1
D、
n+1
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點在y軸上且焦距為10,一條漸近線方程為y=
3
4
x的雙曲線的標準方程為
 

查看答案和解析>>

同步練習(xí)冊答案