16.直線l過(guò)拋物線C:y2=4x的焦點(diǎn)F交拋物線C于A、B兩點(diǎn),則$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$的取值范圍為( 。
A.{1}B.(0,1]C.[1,+∞)D.$[{\frac{1}{2},1}]$

分析 根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,設(shè)過(guò)F的直線方程,與拋物線方程聯(lián)立,整理后,設(shè)A(x1,y1),B(x2,y2)根據(jù)韋達(dá)定理可求得x1x2的值,又根據(jù)拋物線定義可知|AF|=x1+1,|BF|=x2+1代入$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$答案可得.

解答 解:易知F坐標(biāo)(1,0)準(zhǔn)線方程為x=-1.
設(shè)過(guò)F點(diǎn)直線方程為y=k(x-1)
代入拋物線方程,得 k2(x-1)2=4x.
化簡(jiǎn)后為:k2x2-(2k2+4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),
則有x1x2=1,
根據(jù)拋物線性質(zhì)可知,|AF|=x1+1,|BF|=x2+1,
∴$\frac{1}{{|{AF}|}}+\frac{1}{{|{BF}|}}$=$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$=$\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}+{x}_{2}+2}$=1,
故選A.

點(diǎn)評(píng) 本題主要考查拋物線的應(yīng)用和拋物線定義.對(duì)于過(guò)拋物線焦點(diǎn)的直線與拋物線關(guān)系,常用拋物線的定義來(lái)解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若定義域?yàn)镽的函數(shù)f(x)滿足:對(duì)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有$\frac{{{x_2}f({x_1})-{x_1}f({x_2})}}{{{x_1}-{x_2}}}<0$,記:a=4f(0.25),b=0.5f(2),c=0.2f(5),則(  )
A.a>b>cB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若關(guān)于x的方程x2+(m-3)x+m=0有兩個(gè)不相等實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.實(shí)數(shù)2,b,a依次成等比數(shù)列,則方程$a{x^2}+bx+\frac{1}{3}=0$的實(shí)根個(gè)數(shù)為( 。
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知a∈R,a>1,解不等式(a-1)x2-ax+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ln(x-1)-k(x-1)+1(k∈R).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若f(x)≤0恒成立,試確定實(shí)數(shù)k的取值范圍;
(III)證明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({N∈{N_+}且n≥2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知直線l過(guò)點(diǎn)(1,0)且傾斜角為α,在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線M的方程為ρsin2θ+4cosθ=0.
(1)寫(xiě)出曲線M的直角坐標(biāo)方程及直線l的參數(shù)方程;
(2)若直線l與曲線M只有一個(gè)公共點(diǎn),求傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.條件p:|x+1|>2,條件q:x>2,則¬p是¬q的( 。
A.充分非必要條件B.必要不充分條
C.充要條件D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線的斜率是$\sqrt{3}$,則此雙曲線的離心率等于( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{\sqrt{7}}}{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案