如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)(理)過軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作直線m′與軌跡C交于不同兩點(diǎn)A、B,且線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y),求y的取值范圍;
(3)(理)對(duì)于(2)中的點(diǎn)A、B,在y軸上是否存在一點(diǎn)D,使得△ABD為等邊三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)設(shè)P(x,y),由題意得Q(x,-1),即可得到,,,利用向量的數(shù)量積運(yùn)算即可得出動(dòng)點(diǎn)P的軌跡C的方程;
(2)利用(1)的軌跡方程即可得到準(zhǔn)線方程及點(diǎn)M的坐標(biāo),設(shè)直線m'的方程為y=kx-1(k≠0),與拋物線方程聯(lián)立得到根與系數(shù)的關(guān)系,利用中點(diǎn)坐標(biāo)和垂直平分線的性質(zhì)即可得到線段AB的垂直平分線的方程即可;
(3)利用(2)的結(jié)論,點(diǎn)到直線的距離公式及等邊三角形的判定即可得出.
解答:解:(1)設(shè)P(x,y),由題意,Q(x,-1),,,,
,得2(y+1)=x2-2(y-1),
化簡得x2=4y.所以,動(dòng)點(diǎn)P的軌跡C的方程為x2=4y.
(2)軌跡C為拋物線,準(zhǔn)線方程為y=-1,
即直線m,∴M(0,-1),
設(shè)直線m'的方程為y=kx-1(k≠0),由 得x2-4kx+4=0,
由△=16k2-16>0,得k2>1.
設(shè)A(x1,y1),B(x2,y2),則x1+x2=4k,
所以線段AB的中點(diǎn)為(2k,2k2-1),
所以線段AB垂直平分線的方程為(x-2k)+k[y-(2k2-1)]=0,
令x=0,得
因?yàn)閗2>1,所以y∈(3,+∞).
(3)由(2),x1+x2=4k,x1x2=4,
=
==
假設(shè)存在點(diǎn)D(0,y),使得△ABD為等邊三角形,
則D到直線AB的距離
因?yàn)镈(0,2k2+1),所以,
所以,解得
所以,存在點(diǎn),使得△ABD為等邊三角形.
點(diǎn)評(píng):本題主要考查拋物線的方程與性質(zhì)、向量的數(shù)量積、準(zhǔn)線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、弦長公式、等邊三角形的定義、點(diǎn)到直線的距離公式、線段的垂直平分線及對(duì)稱等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證以及分析問題、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動(dòng)點(diǎn)M到點(diǎn)F的距離比它到直線L的距離小1,求動(dòng)點(diǎn)M的軌跡E的方程;
(2)過點(diǎn)F的直線g交軌跡E于G(x1,y1)、H(x2,y2)兩點(diǎn),求證:x1x2 為定值;
(3)過軌跡E上一點(diǎn)P作圓C的切線,切點(diǎn)為A、B,要使四邊形PACB的面積S最小,求點(diǎn)P的坐標(biāo)及S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)二模)如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)(文)過軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作方向向量為
d
=(a,1)的直線m′與軌跡C交于不同兩點(diǎn)A、B,問是否存在實(shí)數(shù)a使得FA⊥FB?若存在,求出a的范圍;若不存在,請(qǐng)說明理由;
(3)(文)在問題(2)中,設(shè)線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)二模)如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)(理)過軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作直線m′與軌跡C交于不同兩點(diǎn)A、B,且線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y0),求y0的取值范圍;
(3)(理)對(duì)于(2)中的點(diǎn)A、B,在y軸上是否存在一點(diǎn)D,使得△ABD為等邊三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)F(1,0),直線lx=-1,P為平面上的動(dòng)點(diǎn),過P作直線l的垂線,垂足為點(diǎn)Q,且·=·.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過點(diǎn)F的直線交軌跡CA,B兩點(diǎn),交直線l于點(diǎn)M,已知=λ1,=λ2,求λ1λ2的值.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖南省高二上學(xué)期第三次月考文科數(shù)學(xué)試卷 題型:解答題

如圖,已知點(diǎn)F(2,0),點(diǎn)P在y 軸上運(yùn)動(dòng),過P作PM⊥PF交x軸于M,延長MP到點(diǎn)N,使|PN|=|PM|.

⑵  求動(dòng)點(diǎn)N的軌跡C的方程;

⑵在⑴中所求的曲線C上有三點(diǎn)A(x1,y1),B(x2,y2),D(x3,y3),若|AF|、|BF|、|DF|成等差數(shù)列,且線段AD的中垂線與x軸的交點(diǎn)為(6,0),求點(diǎn)B的坐標(biāo)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案