如圖,在直棱柱ABCD-A1B1C1D1中,AA1=4,底面是邊長(zhǎng)為2的菱形,且∠BAD=60°.
(1)求證:AC⊥B1D;
(2)求三棱錐B1-ABC的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:(1)由已知得AC⊥BD,AC⊥BB1,從而AC⊥平面BDB1,由此能證明AC⊥B1D.
(2)由已知得BB1⊥平面ABC,且BB1=4,S△ABC=
1
2
×4×4×sin120°
=4
3
,由此能求出三棱錐B1-ABC的體積.
解答: (1)證明:∵底面ABCD是邊長(zhǎng)為2的菱形,
∴AC⊥BD,
∵在直棱柱ABCD-A1B1C1D1中,AC⊥BB1,
又BD∩BB1=B,∴AC⊥平面BDB1,
∵B1D?平面BDB1,∴AC⊥B1D.
(2)∵在直棱柱ABCD-A1B1C1D1中,AA1=4,
底面是邊長(zhǎng)為2的菱形,且∠BAD=60°,
∴BB1⊥平面ABC,且BB1=4,
S△ABC=
1
2
×4×4×sin120°
=4
3
,
∴三棱錐B1-ABC的體積:
V=
1
3
S△ABC•BB1
=
1
3
×4
3
×4
=
16
3
3
點(diǎn)評(píng):本題考查異面直線垂直的證明,考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,a},B={1,2,3},則“a=3”是“A?B”的
 
條件.
(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選出一種填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x+1≤0},B={x∈Z|x2-3<0},則(∁RA)∩B=( 。
A、(-1,2)
B、{-1,0,1}
C、(-1,1)
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
2
,求
2
3
sin2α+
1
4
cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是二次函數(shù),g(x)=2x+1,f[g(x)]=4x2+2x,f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐A-BCD中,底面BCD是正三角形,AC=BD=2,AB=AD=
2
,O為BD的中點(diǎn)
(1)求證:AO⊥平面BCD;
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y∈(0,2π)且滿足
2
(cosx-sinx)=3sin2y-6siny+5,求x-y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2ax+1在區(qū)間[-1,2]上的最大值是4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過直線x+y=1和2x-3y+8=0的交點(diǎn)P.
(1)若直線l過點(diǎn)Q(0,-1),求直線l的斜率;
(2)若直線l與直線3x-4y+5=0垂直,求直線l的方程(請(qǐng)用一般式表達(dá)).

查看答案和解析>>

同步練習(xí)冊(cè)答案