將5封信投入3個郵筒,不同的投法共有
 
種.
考點(diǎn):計數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)分步計數(shù)原理,每投一封信為一步,每一步有3種投法,問題得以解決.
解答: 解:每投一封信為一步,共5步,每一步有3種投法,根據(jù)分步計數(shù)原理,不同的投法共有35=243種.
故答案為243.
點(diǎn)評:本題主要考查了分步計數(shù)原理,關(guān)鍵是分幾步,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.
(Ⅰ)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(Ⅲ)從抽取的12人中隨機(jī)選取3人,記ξ表示成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)(x∈D)同時滿足下列條件:
①f(x)在D內(nèi)為單調(diào)函數(shù);
②f(x)的值域?yàn)镈的子集,則稱此函數(shù)為D內(nèi)的“保值函數(shù)”.
(Ⅰ)f(x)=
2x+b-4
ln2
是[1,+∞)內(nèi)的“保值函數(shù)”,則b的最小值為
 

(Ⅱ)當(dāng)-1≤a≤1,且a≠0,-1≤b≤1時,g(x)=ax2+b是[0,1]內(nèi)的“保值函數(shù)”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S4=8,S8=12,則a13+a14+a15+a16的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的流程圖,若輸入x的值為2,則輸出x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)為定義在R上的增函數(shù),對任意的x∈R都有f(x)+f(-x)=0,設(shè)z=x+2y,x,y滿足不等式f(x2-2x)+f(2y-y2)≥0,則當(dāng)1≤x≤4時,z的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組男女生共8人,現(xiàn)從男生中選2人,女生中選1人,分別去做3中不同的工作,共有90種不同的選法,則男女生人數(shù)為( 。
A、2,6B、3,5
C、5,3D、6,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合 A={x|x2+x-2<0},B={-2,-1,0,1,2},則A∩B=(  )
A、{-2,-1,0,1}
B、{-1,0,1}
C、{0,1}
D、{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(3π+α)=2sin(
2
+α),求下列各式的值.
(1)
sinα-4cosα
5sinα+2cosα
;
(2)sin2α+sin2α.

查看答案和解析>>

同步練習(xí)冊答案