當(dāng)m≠-1時,關(guān)于x,y的方程組
mx+y=m+1
x+my=2m
有( 。
分析:先根據(jù)方程組中x,y的系數(shù)及常數(shù)項(xiàng)計(jì)算計(jì)算出D,Dx,Dy,下面對m的值進(jìn)行分類討論:(1)當(dāng)m≠-1,m≠1時,(2)當(dāng)m=-1時,(3)當(dāng)m=1時,分別求解方程組的解即可.
解答:解:D=
.
m1
1m
.
=m2-1=(m+1)(m-1),
Dx=
.
m+11
2mm
.
=m2-m=m(m-1),
Dy=
.
mm+1
12m
.
=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)
當(dāng)m≠-1,m≠1時,D≠0,方程組有唯一解,解為
x=
m
m+1
y=
2m+1
m+1
.…((2分),其中解1分)
當(dāng)m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為
x+y=2
x+y=2
,
令x=t(t∈R),原方程組的解為
x=t
y=2-t
(t∈R).…((2分),沒寫出解扣1分)
故選C.
點(diǎn)評:本小題主要考查二元一次方程組的矩陣形式、線性方程組解的存在性,唯一性、二元方程的解法等基礎(chǔ)知識,考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=lnx-ax,a∈R.
(1)當(dāng)x=1時,函數(shù)f(x)取得極值,求a的值;
(2)當(dāng)a>0時,求函數(shù)f(x)在區(qū)間[1,2]的最大值;
(3)當(dāng)a=-1時,關(guān)于x的方程2mf(x)=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市閔行三中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

當(dāng)m≠-1時,關(guān)于x,y的方程組有( )
A.唯一解
B.無解或無窮多解
C.唯一解或無窮多解
D.唯一解或無解

查看答案和解析>>

同步練習(xí)冊答案