已知點(diǎn)F是橢圓
的右焦點(diǎn),過原點(diǎn)的直線交橢圓于點(diǎn)A、P,PF垂直于x軸,直線AF交橢圓于點(diǎn)B,
,則該橢圓的離心率
=
___▲___.
此題考查橢圓的相關(guān)性質(zhì)和直線方程的相關(guān)知識,利用結(jié)論:若橢圓的方程為
,即焦點(diǎn)在
軸上,若直線
與橢圓相交,被橢圓所截得弦為
,其中點(diǎn)設(shè)為
,則該直線的斜率與該弦的中點(diǎn)與原點(diǎn)的斜率之積為常數(shù),即
;求解較簡單;
由已知得,
,取
中點(diǎn)
,可知
,又因為
,所以
,又因為
,由
,
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓
的左、右焦點(diǎn)分別為
,下頂點(diǎn)為
,點(diǎn)
是橢圓上任一點(diǎn),圓
是以
為直徑的圓.
⑴當(dāng)圓
的面積為
,求
所在的直線方程;
⑵當(dāng)圓
與直線
相切時,求圓
的方程;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
+
=1(a>b>0)上的點(diǎn)M (1,
)到它的兩焦點(diǎn)F
1,F(xiàn)
2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn)。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
上一點(diǎn)P到它的一個焦點(diǎn)的距離等于3,那么點(diǎn)P到另一個焦點(diǎn)的距離等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)的距離之比為
,則此橢圓離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
給定橢圓
:
. 稱圓心在原點(diǎn)
,半徑為
的圓是橢圓
的“準(zhǔn)圓”. 若橢圓
的一個焦點(diǎn)為
,其短軸上的一個端點(diǎn)到
的距離為
.
(1)求橢圓
的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)
是橢圓
的“準(zhǔn)圓”上的一個動點(diǎn),過動點(diǎn)
作直線
,使得
與橢圓
都只有一個交點(diǎn),試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點(diǎn)
動點(diǎn)
滿足
,當(dāng)點(diǎn)
的縱坐標(biāo)為
時,點(diǎn)
到坐標(biāo)原點(diǎn)的距離為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,直線
,橢圓
分別為橢圓
的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線
過右焦點(diǎn)
時,求直線
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
兩點(diǎn),
的重心分別為
若原點(diǎn)
在以線段
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓C:
,
為橢圓C的兩焦點(diǎn),P為橢圓C上一點(diǎn),連接
并
延長交橢圓于另外一點(diǎn)Q,則⊿
的周長_______
查看答案和解析>>