【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:
A:所有芒果以10元/千克收購;
B:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
【答案】(1)中位數(shù)為268.75;(2)應(yīng)選方案..
【解析】
(1)由頻率分布直方圖可得中位數(shù)在內(nèi),利用中位數(shù)兩側(cè)的頻率和相等列方程即可得解;
(2)由題意結(jié)合頻率分布直方圖求得每個芒果的平均質(zhì)量,即可得方案可獲得的利潤;由頻率分布直方圖估計質(zhì)量低于250克、高于或等于250克的芒果的數(shù)量,即可得方案可獲得的利潤;比較大小即可得解.
(1)由頻率分布直方圖可得:
前3組的頻率和為,
前4組的頻率和為,
所以中位數(shù)在內(nèi),
設(shè)中位數(shù)為,則有,解得,
故中位數(shù)為268.75;
(2)由題意方案可獲得的利潤:
元;
方案可獲得利潤:
由題意得低于250克可獲利:元;
高于或等于250克可獲利:元,
故總獲利元;
由于,故方案獲利更多,應(yīng)選方案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點O為坐標(biāo)原點,極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線C1和曲線C2的直角坐標(biāo)方程;
(2)若點P是曲線C1上一動點,過點P作線段OP的垂線交曲線C2于點Q,求線段PQ長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點為P,當(dāng)k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于命題的說法錯誤的是( )
A.命題“若,則”的逆否命題為“若,則”
B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件
C.“若為的極值點,則”的逆命題為真
D.命題:,的否定是,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)已知常數(shù)解關(guān)于的不等式;
(Ⅱ)若函數(shù)的圖象恒在函數(shù)圖象的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年湖北抗擊新冠肺炎期間,全國各地醫(yī)護人員主動請纓,支援湖北.某地有3名醫(yī)生,6名護士來到武漢,他們被隨機分到3家醫(yī)院,每家醫(yī)院1名醫(yī)生、2名護士,則醫(yī)生甲和護士乙分到同一家醫(yī)院的概率為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com