【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于201935日和33日在北京召開為了了解哪些人更關(guān)注“兩會”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區(qū)間內(nèi)的人分別稱為“青少年人”和“中老年人”經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為.其中“青少年人”中有40人關(guān)注“兩會”,“中老年人”中關(guān)注“兩會”和不關(guān)注“兩會”的人數(shù)之比是.

1)求圖中的值;現(xiàn)釆用分層抽樣在中隨機(jī)抽取8名代表,從8人中仼選2人,求2人中至少有1個是“中老年人”的概率是多少?

2)根據(jù)已知條件,完成下面的列聯(lián)表,并根據(jù)此統(tǒng)計結(jié)果判斷:能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”?

關(guān)注

不關(guān)注

合計

青少年人

中老年人

合計

參考數(shù)據(jù)及公式:

0.150

0.100

0.050

0.010

0.001

2.072

2.706

3.841

6.635

10.828

【答案】(1);;(2)表格見詳解;有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”.

【解析】

1)根據(jù)已知條件,結(jié)合頻率分布直方圖,即可容易求得參數(shù);利用分層抽樣的等比例抽取的特點(diǎn),求出各區(qū)間抽取的人數(shù),再求古典概型的概率即可;

2)先補(bǔ)充完成表格,再計算,據(jù)此判斷.

1)根據(jù)題意可知,落在區(qū)間的人數(shù)為人,

落在區(qū)間的人數(shù)為人;

故可得,

解得

又落在中的人數(shù)分別為人,

根據(jù)分層抽樣等比例抽取的性質(zhì),

從以上兩組中應(yīng)該分別抽取的人數(shù)為人.

2人中至少有1個是“中老年人”的概率.

(2)根據(jù)題意補(bǔ)充表格如下:

關(guān)注

不關(guān)注

合計

青少年人

40

55

95

中老年人

70

35

105

合計

110

90

200

.

故有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下,通過日常監(jiān)控得知,,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為

1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得產(chǎn)品至少有一件合格的概率不低于99.5%,求的最小值;

2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.

①已知,生產(chǎn)線的不合格品返工后每件產(chǎn)品可分別挽回?fù)p失5元和3元,若從兩條生產(chǎn)線上各隨機(jī)抽檢1000件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線的挽回?fù)p失較多?

②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件可分別獲利10元、8元、6元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取100件進(jìn)行分級檢測,結(jié)果統(tǒng)計如圖所示,用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估計該廠產(chǎn)量2000件時利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知線段是過拋物線的焦點(diǎn)F的一條弦,過點(diǎn)AA在第一象限內(nèi))作直線垂直于拋物線的準(zhǔn)線,垂足為C,直線與拋物線相切于點(diǎn)A,交x軸于點(diǎn)T,給出下列命題:

(1);

(2);

(3).

其中正確的命題個數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ4cos θ,直線l與圓C交于A,B兩點(diǎn).

(1)求圓C的直角坐標(biāo)方程及弦AB的長;

(2)動點(diǎn)P在圓C(不與A,B重合),試求△ABP的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個命題:

①已知直線和平面,若,則;

②平面上到一個定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;

③雙曲線,則直線與雙曲線有且只有一個公共點(diǎn);

④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直;

⑤過的直線與橢圓交于兩點(diǎn),線段中點(diǎn)為,設(shè)直線斜率為,直線的斜率為,則等于.

其中,正確命題的序號為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在貫徹中共中央國務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶100戶貧困戶.工作組對這100戶村民的貧困狀況和家庭成員受教育情況進(jìn)行了調(diào)查:甲村55戶貧困村民中,家庭成員接受過中等及以上教育的只有10戶,乙村45戶貧困村民中,家庭成員接受過中等及以上教育的有20.

1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為貧困與接受教育情況有關(guān);

家庭成員接受過中等以下

教育的戶數(shù)

家庭成員接受過中等及以上

教育的戶數(shù)

合計

甲村貧困戶數(shù)

乙村貧困戶數(shù)

合計

2)在被幫扶的100戶貧困戶中,按分層抽樣的方法從家庭成員接受過中等及以上教育的貧困戶中抽取6戶,再從這6戶中采用簡單隨機(jī)抽樣的方法隨機(jī)抽取2戶,求這2戶中甲、乙兩村恰好各1戶的概率.

參考公式與數(shù)據(jù):,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學(xué)科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).

)(i)請根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;


優(yōu)分

非優(yōu)分

總計

男生




女生




總計



50

ii)據(jù)此列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認(rèn)為該學(xué)科成績與性別有關(guān)?

)將頻率視作概率,從高三年級該學(xué)科成績中任意抽取3名學(xué)生的成績,求至少2名學(xué)生的成績?yōu)閮?yōu)分的概率.

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:

年份

1

2

3

4

5

羊只數(shù)量(萬只)

1.4

0.9

0.75

0.6

0.3

草地植被指數(shù)

1.1

4.3

15.6

31.3

49.7

根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時的草場植被指數(shù);以上判斷中正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與圓相交于兩點(diǎn),點(diǎn),且,若,則實數(shù)的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊答案