解答:
解:(1)g (x)=lnx-x+1,g′(x)=
-1=
,
當(dāng)0<x<1時,g′(x)>0;當(dāng)x>1時,g′(x)<0,
可得g (x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
故g (x)有極大值為g (1)=0,無極小值.
(2)h(x)=lnx+|x-a|.
當(dāng)a≤0時,h(x)=lnx+x-a,h′(x)=1+
>0恒成立,此時h(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a>0時,h(x)=
①當(dāng)x≥a時,h(x)=lnx+x-a,h′(x)=1+
>0恒成立,此時h(x)在(a,+∞)上單調(diào)遞增;
②當(dāng)0<x<a時,h(x)=lnx-x+a,h′(x)=
-1=
.
當(dāng)0<a≤1時,h′(x)>0恒成立,此時h(x)在(0,a)上單調(diào)遞增;
當(dāng)a>1時,當(dāng)0<x<1時h′(x)>0,當(dāng)1≤x<a時h′(x)≤0,
所以h(x)在(0,1)上單調(diào)遞增,在(1,a)上單調(diào)遞減.
綜上,當(dāng)a≤1時,h(x)的增區(qū)間為(0,+∞),無減區(qū)間;
當(dāng)a>1時,h(x)增區(qū)間為(0,1),(a,+∞);減區(qū)間為(1,a).
(3)不等式(x
2-1)f (x)≥k(x-1)
2對一切正實(shí)數(shù)x恒成立,
即(x
2-1)lnx≥k(x-1)
2對一切正實(shí)數(shù)x恒成立.
當(dāng)0<x<1時,x
2-1<0;lnx<0,則(x
2-1)lnx>0;
當(dāng)x≥1時,x
2-1≥0;lnx≥0,則(x
2-1)lnx≥0.
因此當(dāng)x>0時,(x
2-1)lnx≥0恒成立.
又當(dāng)k≤0時,k(x-1)
2≤0,故當(dāng)k≤0時,(x
2-1)lnx≥k(x-1)
2恒成立.
下面討論k>0的情形.
當(dāng)x>0且x≠1時,(x
2-1)lnx-k(x-1)
2=(x
2-1)[lnx-
].
設(shè)h(x)=lnx-
( x>0且x≠1),h′(x)=
-
=
.
記△=4(1-k)
2-4=4(k
2-2k).
①當(dāng)△≤0,即0<k≤2時,h′(x)≥0恒成立,故h(x)在(0,1)及(1,+∞)上單調(diào)遞增.
于是當(dāng)0<x<1時,h(x)<h(1)=0,又x
2-1<0,故(x
2-1)h(x)>0,即(x
2-1)lnx>k(x-1)
2.
當(dāng)x>1時,h(x)>h(1)=0,又x
2-1>0,故(x
2-1)h(x)>0,即(x
2-1)lnx>k(x-1)
2.
又當(dāng)x=1時,(x
2-1)lnx=k(x-1)
2.
因此當(dāng)0<k≤2時,(x
2-1)lnx≥k(x-1)
2對一切正實(shí)數(shù)x恒成立.
②當(dāng)△>0,即k>2時,設(shè)x
2+2(1-k)x+1=0的兩個不等實(shí)根分別為x
1,x
2(x
1<x
2).
函數(shù)φ(x)=x
2+2(1-k)x+1圖象的對稱軸為x=k-1>1,
又φ(1)=4-2k<0,于是x
1<1<k-1<x
2.
故當(dāng)x∈(1,k-1)時,φ(x)<0,即h′(x)<0,從而h(x)在(1,k-1)在單調(diào)遞減;
而當(dāng)x∈(1,k-1)時,h(x)<h(1)=0,此時x
2-1>0,于是(x
2-1)h(x)<0,即(x
2-1)lnx<k(x-1)
2,
因此當(dāng)k>2時,(x
2-1)lnx≥k(x-1)
2對一切正實(shí)數(shù)x不恒成立.
綜上,當(dāng)(x
2-1)f (x)≥k(x-1)
2對一切正實(shí)數(shù)x恒成立時,k≤2,即k的取值范圍是(-∞,2].