已知函數(shù)f(x)=x2-4,設(shè)曲線yf(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N),其中x1為正實數(shù).
(1)用xn表示xn+1
(2)求證:對一切正整數(shù)n,xn+1xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式.

(1)xn+1(2)見解析(3)xn

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個3米的進出口(如圖).設(shè)矩形的長為米,鋼筋網(wǎng)的總長度為米.

(1)列出的函數(shù)關(guān)系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最。
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測,一個橋墩的費用為256萬元,相鄰兩個橋墩之間的距離均為x,且相鄰兩個橋墩之間的橋面工程費用為(1+)x萬元,假設(shè)所有橋墩都視為點且不考慮其他因素,記工程總費用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當m=1280米時,需要新建多少個橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2+mx+n的圖象過點(1,3),且f(-1+x)=f(-1-x)對任意實數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點對稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)設(shè),求的最大值與最小值;
(2)求的最大值與最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)若函數(shù)上不具有單調(diào)性,求實數(shù)的取值范圍;
(2)若.
(。┣髮崝(shù)的值;
(ⅱ)設(shè),,,當時,試比較,的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.

查看答案和解析>>

同步練習冊答案