精英家教網 > 高中數學 > 題目詳情

設函數f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數f(x)的零點;
(2)若對任意b∈R,函數f(x)恒有兩個不同零點,求實數a的取值范圍.

(1) 3和-1   (2) (0,1)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)若對于區(qū)間內的任意,總有成立,求實數的取值范圍;
(2)若函數在區(qū)間內有兩個不同的零點,求:
①實數的取值范圍; ②的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2-4,設曲線yf(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N),其中x1為正實數.
(1)用xn表示xn+1;
(2)求證:對一切正整數n,xn+1xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數列{an}成等比數列,并求數列{xn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在R上的函數及二次函數滿足:。
(1)求的解析式;
(2);
(3)設,討論方程的解的個數情況.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關系有經驗公式P=,Q=t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關于x的函數表達式.
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=a-是偶函數,a為實常數.
(1)求b的值.
(2)當a=1時,是否存在n>m>0,使得函數y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=log4(4x+1)+kx(k∈R)為偶函數.
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一個根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)=ax2+x,若對任意x1、x2∈R,恒有2f≤f(x1)+f(x2)成立,不等式f(x)<0的解集為A.
(1)求集合A;
(2)設集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知兩條直線l1:y=m和l2:y=,l1與函數y=|log2x|的圖象從左至右相交于點A、B,l2與函數y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當m變化時,求的最小值.

查看答案和解析>>

同步練習冊答案