已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)被f(x)的圖像截得的弦長為4,數(shù)列{an}滿足a1=2,(an+1-an)g(an)+f(an)=0(n∈N*).

(1)函數(shù)f(x);

(2)求數(shù)列{an}的通項(xiàng)公式;

(3)設(shè)bn=3f(an)-g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n.

答案:
解析:

  解:(Ⅰ)設(shè),則直線圖象的兩個(gè)交點(diǎn)為(1,0),

  

    3分

  (Ⅱ)

  

  

  

   數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列

    9分

  (Ⅲ)

  

  令 則

  的值分別為……,經(jīng)比較最近,

  ∴當(dāng)時(shí),有最小值是,當(dāng)時(shí),有最大值是0  14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)被f(x)的圖象截得的弦長為4
17
,數(shù)列{an}滿足,(an+1-an)g(an)+f(an)=0(n∈N*).
(I)求函數(shù)f(x);
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)bn=
(an-1)g(n)
4
,(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)被f(x)的圖象截得的弦長為4
17
,數(shù)列{an}滿足,(an+1-an)g(an)+f(an)=0(n∈N*).
(1)函數(shù)f(x);
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=3f(an)-g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年平遙中學(xué)理) 已知定義域?yàn)镽的二次函數(shù)f(x)的最小值為0且有f(1+x)=f(1-x),直線g(x)=4(x-1)

被f(x)的圖象截得的弦長為,數(shù)列{an}滿足a1=2,(an+1- an )g (an )+f(an )=0(n∈N*),

(1)求函數(shù)f(x)的表達(dá)式;

(2)求證an=( )n-1+1;

(3)設(shè)bn=3f(an) - g(an+1),求數(shù)列{bn}的最值及相應(yīng)的n。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年紹興一中三模文) (15分)  已知定義域?yàn)镽的二次函數(shù)的最小值為0且有,直線的圖象截得的弦長為,數(shù)列 滿足,

    ⑴求函數(shù)的表達(dá)式;

    ⑵求證;

    ⑶設(shè),求數(shù)列的最值及相應(yīng)的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年南昌市三校聯(lián)考文) 已知定義域?yàn)镽的二次函數(shù)的最小值為0,且有,且;函數(shù),數(shù)列滿足,

①求函數(shù)

②求數(shù)列的通項(xiàng)公式;

,求數(shù)列的前n項(xiàng)和。

查看答案和解析>>

同步練習(xí)冊答案