【題目】如圖已知四棱錐 P ABCD 的底面是邊長為 6 的正方形,側(cè)棱 PA 的長為 8,且垂直于底面,點 M . N 分別是 DC .AB 的中點。
求:(1)異面直線 PM 與 CN 所成角的正切值;
(2)四棱錐 P ABCD 的表面積.
【答案】(1)(2)144
【解析】
(1)解法 一:連接AM,∵底面ABCD是邊長為6的正方形,點M、N分別是DC、AB的中點,可得,于是四邊形AMCN是平行四邊形,可得CN∥AM,因此∠PMA(為銳角)是異面直線PM與CN所成角,利用直角三角形的邊角關(guān)系求出即可;
解法二:以A為坐標(biāo)原點建立空間直角坐標(biāo)系,利用異面直線的方向向量的夾角公式即可得出異面直線所成的角;
(2)由PA垂直于底面,利用線面垂直的性質(zhì)定理可得PA⊥AB,PA⊥AD,即Rt△PAB≌Rt△PDC,再利用線面垂直的判定定理可得BC⊥PB;同理CD⊥PD,Rt△PBC≌Rt△PAD,利用直角三角形的面積計算公式分別計算即可.
解:(1)解法 一:連接AM,∵底面ABCD是邊長為6的正方形,點M、N分別是DC、AB的中點,
∴,
∴四邊形AMCN是平行四邊形,
∴CN∥AM,
∴∠PMA(為銳角)是異面直線PM與CN所成角.
因為PA垂直于底面,所以PA⊥AM,
點M分別是DC的中點,DC=6,∴.
在Rt△PAM中,PA=8,,
∴,
即異面直線PM與CN所成角的正切值為.
解法二:以A為坐標(biāo)原點建立空間直角坐標(biāo)系,
可得M(3,6,0),P(0,0,8),N(3,0,0),C(6,6,0),
∴,,
直線PM與CN所成角為θ,向量的夾角為,
∵,
又,
即異面直線PM與CN所成角的正切值為.
(2)因為PA垂直于底面,所以PA⊥AB,PA⊥AD,即Rt△PAB≌Rt△PAD,
又PA⊥BC,AB⊥BC,AB∩BC=B,∴BC⊥平面PAB,∴BC⊥PB.
同理CD⊥PD,∴Rt△PBC≌Rt△PDC,
∵底面四邊形ABCD是邊長為6的正方形,所以S=36
又S側(cè)=S△PAB+S△PAD+S△PBC+S△PCD.
S表=108+36=144
所以四棱錐P﹣ABCD的表面積是144.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在正方體中,點分別為棱,的中點,點為上底面的中心,過三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連接和的任一點,設(shè)與平面所成角為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學(xué)生進行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠(yuǎn)15分,擲實心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機抽取了100名學(xué)生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級所有學(xué)生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學(xué)期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:
預(yù)計全年級恰有2000名學(xué)生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級所有學(xué)生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某校學(xué)生每周課外閱讀的情況,采用分層抽樣的方法,收集100位學(xué)生每周課外閱讀時間的樣本數(shù)據(jù)(單位:小時).根據(jù)這100個數(shù)據(jù),制作出學(xué)生每周課外閱讀時間的頻率分布直方圖(如圖).
(1)估計這100名學(xué)生每周課外閱讀的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)由頻率分布直方圖知,該校學(xué)生每周課外閱讀時間近似服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
①求;
②若該校共有10000名學(xué)生,記每周課外閱讀時間在區(qū)間的人數(shù)為,試求.
參數(shù)數(shù)據(jù):,若,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, △ABC 中, ACB 90 , ABC 30 , BC ,在三角形內(nèi)挖去一個半圓(圓心 O 在邊 BC 上,半圓與 AC,AB 分別相切于點 C,M ,與 BC 交于點 N ),將其繞直線 BC旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體,則該旋轉(zhuǎn)體體積為________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱 ABC A1 B1C1 中, AB 3 , AA1 4 , M 為 AA1 的中點, P 是 BC 上一點,且由 P 沿棱柱側(cè)面經(jīng)過棱 CC1 到 M 點的最短路線長為 ,設(shè)這條最短路線與 CC1 的交點為 N 。求:
(1)該三棱柱的側(cè)面展開圖的對角線長;
(2) PC 和 NC 的長;
(3)平面 NMP 和平面 ABC 所成銳二面角大小的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標(biāo)的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組如下的隨機數(shù):
7327 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計該運動員射擊4次至少擊中3次的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)(題文)已知橢圓的左右頂點分別為,,右焦點的坐標(biāo)為,點坐標(biāo)為,且直線軸,過點作直線與橢圓交于,兩點(,在第一象限且點在點的上方),直線與交于點,連接.
(1)求橢圓的方程;
(2)設(shè)直線的斜率為,直線的斜率為,問:的斜率乘積是否為定值,若是求出該定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,已知,M是BC的中點.
(1)若,求向量與向量的夾角的余弦值;
(2)若O是線段AM上任意一點,且,求的最小值;
(3)若點P是邊BC上的一點,且,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com