【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點(diǎn)的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點(diǎn)P,C2與C3相交于點(diǎn)Q,且|PQ|=8,求α的值.

【答案】
(1)解:曲線C1的參數(shù)方程為 (φ為參數(shù)),

消去參數(shù)可得:x2+(y﹣2)2=4.

曲線C2的極坐標(biāo)方程為ρ=4 cosθ,即ρ2=4 ρcosθ,

化為直角坐標(biāo)方程:x2+y2=4 x.

聯(lián)立

解得 , ,

∴C1與C2交點(diǎn)的直角坐標(biāo)分別為:(0,0);


(2)解:曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),

時(shí),可得 ,代入方程:x2+(y﹣2)2=4,解得t=0,t=4.

代入:x2+y2=4 x,解得t=0,不滿足|PQ|=8,舍去.

時(shí),消去參數(shù)化為普通方程:y=xtanα,設(shè)k=tanα.

聯(lián)立 ,解得 ,

可得P(0,0),或P

聯(lián)立 ,解得 , ,

可得Q(0,0),或Q

∵|PQ|=8,∴只能取P ,Q

+ =82,

化為: =0,解得k=﹣ ,

∴tanα=﹣ ,又0≤α<π,解得α=


【解析】(1)曲線C1的參數(shù)方程為 (φ為參數(shù)),消去參數(shù)可得普通方程.曲線C2的極坐標(biāo)方程為ρ=4 cosθ,即ρ2=4 ρcosθ,利用互化公式可得直角坐標(biāo)方程,聯(lián)立解出即可得出.(2)曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0), 時(shí),不滿足|PQ|=8,舍去.
時(shí),消去參數(shù)化為普通方程:y=xtanα,設(shè)k=tanα,即直線l的方程為:y=kx,分別與曲線C1 , C2的方程聯(lián)立解出交點(diǎn)P,Q的坐標(biāo),利用兩點(diǎn)之間的距離公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為.

(1)的單調(diào)遞增區(qū)間;

(2)中,角的對(duì)邊分別是滿足,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

f(x)=Asin(ωx+φ)

0

5

﹣5

0


(1)請(qǐng)將如表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移 個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱中心.
(3)求當(dāng) 時(shí),函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若,求證:不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個(gè)不透明的盒子里有5枚質(zhì)地均勻、大小相等的銅幣,銅幣有兩種顏色,一種為黃色,一種為綠色.其中黃色銅幣兩枚,標(biāo)號(hào)分別為1,2,綠色銅幣三枚,標(biāo)號(hào)分別為1,2,3.
(1)從該盒子中任取2枚,試列出一次實(shí)驗(yàn)所有可能出現(xiàn)的結(jié)果;
(2)從該盒子中任取2枚,求這兩枚銅幣顏色不同且標(biāo)號(hào)之和大于3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抽樣調(diào)查某大型機(jī)器設(shè)備使用年限x和該年支出維修費(fèi)用y(萬元),得到數(shù)據(jù)如表

使用年限x

2

3

4

5

6

維修費(fèi)用y

2.2

3.8

5.5

6.5

7.0

部分?jǐn)?shù)據(jù)分析如下 =25, yi=112.3, =90
參考公式:線性回歸直線方程為
(1)求線性回歸方程;
(2)由(1)中結(jié)論預(yù)測(cè)第10年所支出的維修費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:x∈R,2x>m(x2+1),q:x0∈R,x02+2x0﹣m﹣1=0,
(1)若q是真命題,求m的范圍;
(2)若p∧(¬q)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)0<a<1,定義a1=1+a, , 求證:對(duì)任意n∈N , 有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab的兩個(gè)零點(diǎn)分別是﹣3和2.
(Ⅰ)求f(x);
(Ⅱ)當(dāng)函數(shù)f(x)的定義域是[0,1]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案