【題目】已知函數(shù).
(1)求的極值;
(2)證明:時(shí),
(3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)且的最大值是,證明:
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)見(jiàn)解析
【解析】
(Ⅰ)先求導(dǎo)數(shù),再根據(jù)討論導(dǎo)函數(shù)零點(diǎn)情況,最后根據(jù)導(dǎo)函數(shù)零點(diǎn)以及導(dǎo)函數(shù)符號(hào)變化規(guī)律確定極值,(Ⅱ)作差函數(shù),先利用導(dǎo)數(shù)研究導(dǎo)函數(shù)單調(diào)性,確定導(dǎo)函數(shù)零點(diǎn),再根據(jù)導(dǎo)函數(shù)符號(hào)確定函數(shù)最小值,最后根據(jù)基本不等式證得結(jié)論,(Ⅲ)先利用導(dǎo)數(shù)研究有兩個(gè)零點(diǎn)時(shí),其兩個(gè)零點(diǎn)對(duì)應(yīng)區(qū)間,再令,根據(jù)條件用表示,利用導(dǎo)數(shù)求其最大值,即得結(jié)論.
(Ⅰ)函數(shù)的定義域?yàn)?/span>.
由已知可得.
(1)當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增; 無(wú)極值.
(2)當(dāng)時(shí),由,解得;由,解得.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減. 的極大值為,無(wú)極小值.
(Ⅱ)證明:令,故只需證明.
因?yàn)?/span>
所以函數(shù)在上為增函數(shù),且,.
故在上有唯一實(shí)數(shù)根,且.
當(dāng)時(shí),,當(dāng)時(shí),,
從而當(dāng)時(shí),取得最小值.
由,得,即,
故 ,
因?yàn)?/span>,所以等于號(hào)取不到,即
綜上,當(dāng)時(shí), 即.
(Ⅲ)∵ 函數(shù)有且只有三個(gè)不同的零點(diǎn),而是其零點(diǎn),
∴ 函數(shù)存在兩個(gè)零點(diǎn)(不等于),即有兩個(gè)不等且不等于的實(shí)數(shù)根.
可轉(zhuǎn)化為方程在區(qū)間上有兩個(gè)不等且不等于的實(shí)數(shù)根,
即函數(shù)的圖象與函數(shù)的圖象有兩個(gè)交點(diǎn).
∵,
∴ 由,解得,故在上單調(diào)遞增;
由,解得,故在上單調(diào)遞減;
故函數(shù)的圖象與的圖象的交點(diǎn)分別在,上,
即的兩個(gè)根分別在區(qū)間,上,
∴的三個(gè)不同的零點(diǎn)分別是,且.
令,則.
由,解得故, .-令,則.
令,則.
所以在區(qū)間上單調(diào)遞增,即.
所以,即在區(qū)間上單調(diào)遞增,
即,
所以,即,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),直線(xiàn)是曲線(xiàn)的切線(xiàn);
(2)若不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線(xiàn)段的中點(diǎn)的橫坐標(biāo)為,且, 恰為函數(shù)的零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線(xiàn)交橢圓于,兩點(diǎn)(為坐標(biāo)原點(diǎn)),的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱錐中,底面是邊長(zhǎng)為的正方形,是正三角形,,分別是的中點(diǎn)。
(1)求證:;
(2)求平面與平面所成銳二面角的大小;
(3)線(xiàn)段上是否存在一個(gè)動(dòng)點(diǎn),使得直線(xiàn)與平面所成角為,若存在,求線(xiàn)段的長(zhǎng)度,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)求這5天的平均發(fā)芽率;
(2)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,,用的形式列出所有的基本事件,并求滿(mǎn)足的事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=60°,PB=PD=2,PA,AC∩BD=O
(1)設(shè)平面ABP∩平面DCP=l,證明:l∥AB
(2)若E是PA的中點(diǎn),求三棱錐P﹣BCE的體積VP﹣BCE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l:yx﹣3經(jīng)過(guò)橢圓1(a>b>0)的一個(gè)焦點(diǎn),且點(diǎn)(0,b)到直線(xiàn)l的距離為2.
(1)求橢圓E的方程;
(2)A、B、C是橢圓E上的三個(gè)動(dòng)點(diǎn),A與B關(guān)于原點(diǎn)對(duì)稱(chēng),且|CA|=|CB|,求△ABC面積的最小值,并求此時(shí)點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計(jì),得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為.
(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認(rèn)為甲乙兩套治療方案對(duì)患者白血病復(fù)發(fā)有影響;
復(fù)發(fā) | 未復(fù)發(fā) | 總計(jì) | |
甲方案 | |||
乙方案 | 2 | ||
總計(jì) | 70 |
(2)為改進(jìn)“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機(jī)抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com