給出下列角的范圍:①(0,);②(,π);③(,);④(-,);⑤(-).當(dāng)x∈    (填序號),等式y(tǒng)==2cosx成立.
【答案】分析:由|cosx-sinx|+|cosx+sinx|=2cosx,可得 cosx>sinx,cosx>-sinx,cosx>0,故-1<tanx<1,得出結(jié)論.
解答:解:函數(shù)y==|cosx-sinx|+|cosx+sinx|=2cosx,
∴cosx>sinx,cosx>-sinx,cosx>0,∴-1<tanx<1.∴kπ-<x<kπ+,k∈z.
結(jié)合所給的選項,
故答案為 ④.
點評:本題考查三角函數(shù)中的恒等變換,根據(jù)三角函數(shù)值的范圍確定角的范圍,判斷-1<tanx<1是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列角的范圍:①(0,
π
2
);②(
π
2
,π);③(
π
4
,
4
);④(-
π
4
,
π
4
);⑤(-
4
,
π
4
).當(dāng)x∈
 
(填序號),等式y(tǒng)=
1-sin2x
+
1+sin2x
=2cosx成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列角的范圍:①(0,);②(,π);③(,);④(-,);⑤(-,).當(dāng)x∈_____________________(填序號),函數(shù)y==2cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

給出下列角的范圍:①(0,數(shù)學(xué)公式);②(數(shù)學(xué)公式,π);③(數(shù)學(xué)公式,數(shù)學(xué)公式);④(-數(shù)學(xué)公式,數(shù)學(xué)公式);⑤(-數(shù)學(xué)公式,數(shù)學(xué)公式).當(dāng)x∈________(填序號),等式y(tǒng)=數(shù)學(xué)公式=2cosx成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列角的范圍:①(0,
π
2
);②(
π
2
,π);③(
π
4
4
);④(-
π
4
,
π
4
);⑤(-
4
π
4
).當(dāng)x∈______(填序號),等式y(tǒng)=
1-sin2x
+
1+sin2x
=2cosx成立.

查看答案和解析>>

同步練習(xí)冊答案