已知雙曲線的兩條漸近線方程為直線l1:y=
3
x和l2:y=-
3
x
,其焦點在x軸上,實軸長為2.
(Ⅰ)求雙曲線的方程;
(Ⅱ)設直線l:y=kx+1與雙曲線相切于點M且與右準線交于N,F(xiàn)為右焦點,求證:∠MFN為直角.
(Ⅰ)由題意,設雙曲線方程為3x2-y2=λ(λ>0)⇒
x2
λ
3
-
y2
λ
=1

又2a=1,∴a=1,
λ
3
=1
,∴λ=3,
∴方程為x2-
y2
3
=1

(Ⅱ)證明:由y=kx+1代入雙曲線方程,消去y得(3-k2)x2-2kx-4=0,
3-k2≠0
△=0
,可得
k2≠3
k2=4
,
∴k=±2,
當k=2時得xM=-2,代入y=2x+1得yM=-3,
∴M(-2,-3),
y=2x+1
x=
1
2
⇒N(
1
2
,2)

F(2,0)⇒
FM
=(-4,-3)
FN
=(-
3
2
,2)⇒
FM
FN
=6-6=0⇒
FM
FN

當k=-2時同理得M(2,-3),N(
1
2
,0)
,F(2,0)⇒
FM
=(0,-3),
FN
=(-
3
2
,0)⇒
FM
FN
=0⇒
FM
FN
,
綜上:∠MFN為直角.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線x2-2y2=8的虛半軸長為( 。
A.4B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線C:
x2
a2
-
y2
b2
=1
的左右焦點分別為F1、F2,過F1的直線與雙曲線左右兩支分別交于A、B兩點,若△ABF2是等邊三角形,則雙曲線C的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線
x2
m
-
y2
7
=1
,直線L過其左焦點F1,交雙曲線左支于A、B兩點,且|AB|=4,F(xiàn)2為右焦點,△ABF2的周長為20,則m=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為
5
2
,則C的漸近線方程為( 。
A.y=±
1
4
x
B.y=±
1
3
x
C.y=±xD.y=±
1
2
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點,若雙曲線的右支上存在一點P,使
PF1
PF2
=0
,且△F1PF2的三邊長構(gòu)成等差數(shù)列,則此雙曲線的離心率為( 。
A.
2
B.
3
C.2D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設雙曲線的頂點為(0,±1),該雙曲線又與直線
15
x-3y+6=0
交于A,B兩點,且OA⊥OB(O為坐標原點).
(1)求此雙曲線的方程;
(2)求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上任意一點P,作與實軸平行的直線,交兩漸近線于M、N兩點,若
PM
PN
=2b2
,則該雙曲線的離心率為(  )
A.
6
3
B.
3
C.
6
2
D.
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
25
+
y2
9
=1
的焦點相同,且它們的離心率之和等于
14
5

(1)求雙曲線的離心率的值;
(2)求雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案