一個口袋有2個紅球和4個黃球,從中隨機地連取3個球,每次取一個,記事件A=“恰有一個紅球”,事件B=“第三個是紅球”,求:

(1)不放回時,事件A,B的概率;

(2)每次抽后放回時,事件A,B的概率.

答案:
解析:

  解:(1)基本事件有,事件A包含的基本事件有

  所以

  因為第三次抽到紅球?qū)η皟纱螞]有什么要求,因為紅球占總球數(shù)的,每次抽到是隨機地等可能事件,所以

  (2)基本事件有種,事件A包含基本事件有

  所以;

  第三次抽到紅球包括={紅,黃,紅},={黃,黃,紅},={黃,紅,紅}三種兩兩互斥,,

  所以


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個口袋里有2個紅球和4個黃球,從中隨機地連取3個球,每次取一個,記事件A=“恰有一個紅球”,事件B=“第3個是紅球”
求:(1)不放回時,事件A、B的概率;
(2)每次抽后放回時,A、B的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•武漢模擬)(文科做) 有A、B兩只口袋中均放有2個紅球和2個白球,先從A袋中任取2個球放到B袋中,再從B袋中任取一個球放到A袋中,經(jīng)過這樣的操作之后.
(1)求A袋中沒有紅球的概率;      
(2)求A袋中恰有一只紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年永定一中二模理)(12分)

一個口袋中裝有個紅球和5個白球,一次摸獎從中摸出兩個球,兩個球顏色不同則為中獎.

(1)試用表示一次摸獎中獎的概率

(2)若=5,求三次摸獎(每次摸獎后放回)恰有一次中獎的概率;

(3)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率記為,當取多少時,值最大?

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆河北省高二上學期四調(diào)理科數(shù)學 題型:解答題

(本題滿分12分)一個口袋有2個紅球和4個黃球,從中隨機地連取3個球,每次取一個,記事件A=“恰有一個紅球”,事件B=“第三個是紅球”,求:

(1)不放回時,事件A,B的概率;

(2)每次抽后放回時,事件A,B的概率.

 

 

查看答案和解析>>

同步練習冊答案