【題目】在直角坐標(biāo)系中,曲線(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為:
當(dāng)極點到直線的距離為時,求直線的直角坐標(biāo)方程;
若直線與曲線有兩個不同的交點,求實數(shù)的取值范圍
【答案】(1) (2)
【解析】
(1)將直線的方程化為直角坐標(biāo)方程,由點到直線的距離公式求出值,可得直線的方程;(2)曲線中消去參數(shù),得出普通方程,并根據(jù)三角函數(shù)的有界性求出的取值范圍,將直線與曲線有兩個不同的交點,轉(zhuǎn)化為直線與二次函數(shù)有兩個不同的交點,通過二次函數(shù)圖象可得出的取值范圍。
(1)直線的方程為:
則直角坐標(biāo)方程為
極點到直線的距離為:;解得
故直線的直角坐標(biāo)方程為
(2)曲線的普通方程為
直線的普通方程為
聯(lián)立曲線與直線的方程,消去可得
即與在上有兩個不同的交點
的最大值為;且;
實數(shù)的范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,頂點為原點的拋物線,它是焦點為橢圓的右焦點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過拋物線的焦點作互相垂直的兩條直線分別交拋物線于四點,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
求函數(shù)圖象上一點處的切線方程.
若方程在內(nèi)有兩個不等實根,求實數(shù)a的取值范圍為自然對數(shù)的底數(shù).
求證,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為:
當(dāng)極點到直線的距離為時,求直線的直角坐標(biāo)方程;
若直線與曲線有兩個不同的交點,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個班級均為 40 人,進行一門考試后,按學(xué)生考試成績及格與不及格進行統(tǒng)計,甲班及格人數(shù)為 36 人,乙班及格人數(shù)為 24 人.
(1)根據(jù)以上數(shù)據(jù)建立一個22的列聯(lián)表;
(2)試判斷是否成績與班級是否有關(guān)?
參考公式:;
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項,其前n項和為,對于任意正整數(shù),都有.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足.
①若,求證:數(shù)列是等差數(shù)列;
②若數(shù)列都是等比數(shù)列,求證:數(shù)列中至多存在三項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二期中考試后,教務(wù)處計劃對全年級數(shù)學(xué)成績進行統(tǒng)計分析,從男、女生中各隨機抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績的頻率分布直方圖,如圖所示.
(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體的8個頂點、12條棱的中點、6個側(cè)面的中心點、1個體的中心點這27個點中,“共面6點組”的個數(shù)是( )。
A. 1320 B. 1326 C. 1332 D. 1336
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com